參數(shù)資料
型號(hào): PIC16C781-I/P
廠商: Microchip Technology
文件頁數(shù): 162/186頁
文件大?。?/td> 0K
描述: IC MCU OTP 1KX14 W/AD COMP 20DIP
產(chǎn)品培訓(xùn)模塊: Asynchronous Stimulus
8-bit PIC® Microcontroller Portfolio
標(biāo)準(zhǔn)包裝: 22
系列: PIC® 16C
核心處理器: PIC
芯體尺寸: 8-位
速度: 20MHz
外圍設(shè)備: 欠壓檢測(cè)/復(fù)位,POR,PWM,WDT
輸入/輸出數(shù): 13
程序存儲(chǔ)器容量: 1.75KB(1K x 14)
程序存儲(chǔ)器類型: OTP
RAM 容量: 128 x 8
電壓 - 電源 (Vcc/Vdd): 4 V ~ 5.5 V
數(shù)據(jù)轉(zhuǎn)換器: A/D 8x8b; D/A 1x8b
振蕩器型: 內(nèi)部
工作溫度: -40°C ~ 85°C
封裝/外殼: 20-DIP(0.300",7.62mm)
包裝: 管件
產(chǎn)品目錄頁面: 636 (CN2011-ZH PDF)
配用: ISPICR1-ND - ADAPTER IN-CIRCUIT PROGRAMMING
DVA16XP202-ND - ADAPTER DEVICE PIC16C781/782
DM163012-ND - BOARD DEMO PICDEM FOR 16C781/782
AC164028-ND - MODULE SKT PROMATEII 20SOIC/DIP
其它名稱: PIC16C781I/P
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁當(dāng)前第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁
2001 Microchip Technology Inc.
Preliminary
DS41171A-page 75
PIC16C781/782
9.4.1
FASTER CONVERSION/LOWER
RESOLUTION TRADE-OFF
Not all applications require a result having 8-bits of res-
olution. Some may instead, require a faster conversion
time. The ADC module allows users to make a trade-off
of conversion speed for resolution. Regardless of the
resolution required, the acquisition time is the same. To
speed up the conversion, the clock source of the ADC
module may be switched during the conversion, so that
the TAD time violates the minimum specified time (see
the applicable Electrical Specification). Once the switch
is made, all the following ADC result bits are invalid
(see ADC Conversion Timing in the Electrical Specifi-
cations section). The clock source may only be
switched between the three oscillator options (it cannot
be switched from/to RC). The equation to determine
the time before the oscillator must be switched for a
desired resolution is as follows:
Conversion time = 2TAD + N TAD + (8 - N)(2TOSC)
Where: N = number of bits of resolution required.
Since the TAD is based on the device oscillator, the user
must employ some method (such as a timer, software
loop, etc.) to determine when the ADC oscillator must
be changed.
9.5
ADC Operation During SLEEP
The ADC module can operate during SLEEP mode.
This requires that the ADC clock source be set to RC
(ADCS1:ADCS0 = 11). When the RC clock source is
selected, the ADC module waits one instruction cycle
before starting the conversion. This allows the SLEEP
instruction to be executed, which eliminates all digital
switching noise from the conversion. When the conver-
sion is completed the GO/DONE bit is cleared, and the
result is loaded into the ADRES register. If the ADC
interrupt is enabled, the device awakens from SLEEP.
If the ADC interrupt is not enabled, the ADC module is
turned off, although the ADON bit remains set.
When the ADC clock source is another clock option
(not RC), a SLEEP instruction causes the present con-
version to be aborted and the ADC module to be turned
off. The ADON bit remains set.
Turning off the ADC places the ADC module in its low-
est current consumption state.
9.6
ADC Accuracy/Error
The absolute accuracy (absolute error) specified for the
ADC converter includes the sum of all contributions for:
Offset error
Gain error
Quantization error
Integral non-linearity error
Differential non-linearity error
Monotonicity
The absolute error is defined as the maximum devia-
tion from an actual transition versus an ideal transition
for any code. The absolute error of the ADC converter
is specified as < ±1 LSb for ADCREF = VDD (over the
device’s specified operating range). However, the
accuracy of the ADC converter degrades as VDD
diverges from VREF.
For a given range of analog inputs, the output digital
code will be the same. This is due to the quantization of
the analog input to a digital code. Quantization error
is typically ± 1/2 LSb and is inherent in the analog to
digital conversion process. The only way to reduce
quantization error is to use an ADC with greater resolu-
tion of the ADC converter.
Offset error measures the first actual transition of a
code versus the first ideal transition of a code. Offset
error shifts the entire transfer function. Offset error can
be calibrated out of a system, or introduced into a sys-
tem, through the interaction of the total leakage current
and source impedance at the analog input.
Gain error measures the maximum deviation of the
last actual transition and the last ideal transition
adjusted for offset error. This error appears as a
change in slope of the transfer function. The difference
in gain error to full scale error is that full scale does not
take offset error into account. Gain error can be cali-
brated out in software.
Linearity error refers to the uniformity of the code
changes. Linearity errors cannot be calibrated out of
the system. Integral non-linearity error measures the
actual code transition versus the ideal code transition,
adjusted by the gain error for each code. Differential
non-linearity measures the maximum actual code
width versus the ideal code width. This measure is
unadjusted.
If the linearity errors are very large, the ADC may
become non-monotonic. This occurs when the digital
values for one or more input voltages are less than the
value for a lower input voltage.
Note:
For the ADC module to operate in SLEEP,
the A/D clock source must be set to RC
(ADCS1:ADCS0 = 11). To perform an ADC
conversion in SLEEP, ensure the SLEEP
instruction immediately follows the instruc-
tion that sets the GO/DONE bit.
相關(guān)PDF資料
PDF描述
PIC24FJ64GA102-I/ML IC MCU 16BIT 64KB FLASH 28QFN
DSPIC30F3012-30I/P IC DSPIC MCU/DSP 24K 18DIP
ATTINY13V-10SJ IC MCU AVR 1K 5V 10MHZ 8SOIC
PIC24HJ32GP302-I/SO IC PIC MCU FLASH 32K 28SOIC
PIC18LF46J53-I/PT IC PIC MCU 64KB FLASH 44TQFP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
PIC16C781T-E/SO 功能描述:8位微控制器 -MCU w/Adv Analog 20MHz RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
PIC16C781T-E/SS 功能描述:8位微控制器 -MCU w/Adv Analog 20MHz RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
PIC16C781T-I/SO 功能描述:8位微控制器 -MCU 1.75KB 128RAM 16 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
PIC16C781T-I/SS 功能描述:8位微控制器 -MCU 1.75KB 128RAM 16 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
PIC16C782/JW 功能描述:8位微控制器 -MCU 3.5KB 128 RAM 16 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時(shí)鐘頻率:50 MHz 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT