PIC18FXX39
DS30485A-page 134
Preliminary
2002 Microchip Technology Inc.
16.4
I2C Mode
The MSSP module in I2C mode fully implements all
master and slave functions (including general call sup-
port) and provides interrupts on START and STOP bits
in hardware to determine a free bus (multi-master func-
tion). The MSSP module implements the Standard
mode specifications, as well as 7-bit and 10-bit
addressing.
Two pins are used for data transfer:
Serial clock (SCL) - RC3/SCK/SCL
Serial data (SDA) - RC4/SDI/SDA
The user must configure these pins as inputs or outputs
through the TRISC<4:3> bits.
FIGURE 16-7:
MSSP BLOCK DIAGRAM
(I2C MODE)
16.4.1
REGISTERS
The MSSP module has six registers for I2C operation.
These are:
MSSP Control Register1 (SSPCON1)
MSSP Control Register2 (SSPCON2)
MSSP Status Register (SSPSTAT)
Serial Receive/Transmit Buffer (SSPBUF)
MSSP Shift Register (SSPSR) - Not directly
accessible
MSSP Address Register (SSPADD)
SSPCON, SSPCON2 and SSPSTAT are the control
and status registers in I2C mode operation. The
SSPCON and SSPCON2 registers are readable and
writable. The lower 6 bits of the SSPSTAT are read
only. The upper two bits of the SSPSTAT are
read/write.
SSPSR is the shift register used for shifting data in or
out. SSPBUF is the buffer register to which data bytes
are written to or read from.
SSPADD register holds the slave device address
when the SSP is configured in I2C Slave mode. When
the SSP is configured in Master mode, the lower
seven bits of SSPADD act as the baud rate generator
reload value.
In receive operations, SSPSR and SSPBUF together,
create a double-buffered receiver. When SSPSR
receives a complete byte, it is transferred to SSPBUF
and the SSPIF interrupt is set.
During transmission, the SSPBUF is not double-
buffered. A write to SSPBUF will write to both SSPBUF
and SSPSR.
Read
Write
SSPSR reg
Match Detect
SSPADD reg
START and
STOP bit Detect
SSPBUF reg
Internal
Data Bus
Addr Match
Set, Reset
S, P bits
(SSPSTAT reg)
RC3/SCK/SCL
RC4/
Shift
Clock
MSb
SDI/
LSb
SDA