Input:
Output:
Current:
PPackage:
ackage:
35-75 V
3.3 V
20 A
Sixteenth - Brick
T
Technical S
echnical Specification
pecification
Product # PQ60033SGL20
Phone 1-888-567-9596
Doc.# 005-2SM633E Rev. A
05/05/06
Page 9
BASIC OPERATION AND FEATURES
The PowerQor sixteenth brick converter switches at a fixed fre-
quency for predictable EMI performance. Rectification of the
transformer’s output is accomplished with synchronous rectifiers.
These devices, which are MOSFETs with a very low on-state resis-
tance, dissipate far less energy than Schottky diodes. This is the
primary reason that the PowerQor converter has such high effi-
ciency, even at very low output voltages and very high output cur-
rents.
Dissipation throughout the converter is so low that it does not
require a heatsink for operation. Since a heatsink is not required,
the PowerQor converter does not need a metal baseplate or pot-
ting material to help conduct the dissipated energy to the
heatsink. The PowerQor converter can thus be built more simply
and reliably using high yield surface mount techniques on a PCB
substrate.
The PowerQor series of sixteenth-brick, eighth-brick, quarter-brick
and half-brick converters uses industry standard footprints and
pin-out configurations.
CONTROL FEATURES
REMOTE ON/OFF (Pin 2): The ON/OFF input, Pin 2, permits
the user to control when the converter is on or off. This input is
referenced to the return terminal of the input bus, Vin(-). There are
two versions of the converter that differ by the sense of the logic
used for the ON/OFF input.
In the positive logic version, the ON/OFF input is active high
(meaning that a high turns the converter on). In the negative logic
version, the ON/OFF signal is active low (meaning that a low
turns the converter on). Figure A details five possible circuits for
driving the ON/OFF pin. Figure B is a detailed look of the inter-
nal ON/OFF circuitry.
REMOTE SENSE(+) (Pins 7 and 5): The SENSE(+) inputs cor-
rect for voltage drops along the conductors that connect the con-
verter’s output pins to the load.
Pin 7 should be connected to Vout(+) and Pin 5 should be con-
nected to Vout(-) at the point on the board where regulation is
desired. A remote connection at the load can adjust for a voltage
drop only as large as that specified in this datasheet, that is
[Vout(+) - Vout(-)] – [Vsense(+) - Vsense(-)] <
Sense Range % x Vout
Pins 7 and 5 must be connected for proper regulation of the out-
put voltage. If these connections are not made, the converter will
deliver an output voltage that is slightly higher than its specified
value.
Note: the output over-voltage protection circuit senses the voltage
across the output (pins 8 and 4) not the voltage across the con-
verter’s sense leads (pins 7 and 5) to determine when it should
trigger. Therefore, the resistive drop on the board should be
small enough so that output OVP does not trigger, even during
load transients.
Open Collector Enable Circuit
Figure A: Various circuits for driving the ON/OFF pin.
Figure B: Internal ON/OFF pin circuitry
Remote Enable Circuit
Direct Logic Drive
Negative Logic
(Permanently Enabled)
Positive Logic
(Permanently Enabled)
ON/OFF
Vin(_
)
ON/OFF
Vin(_
)
ON/OFF
5V
TTL/
CMOS
Vin(_
)
ON/OFF
Vin(_)
Vin(_
)
TTL
5V
50k
50k
Vcc(+)
ON/OFF
Vin(_)
50k
100pf