參數(shù)資料
型號: SCN2681AC1N24
廠商: NXP SEMICONDUCTORS
元件分類: 微控制器/微處理器
英文描述: Dual asynchronous receiver/transmitter DUART
中文描述: 2 CHANNEL(S), 1M bps, SERIAL COMM CONTROLLER, PDIP24
封裝: 0.400 INCH, PLASTIC, SOT-248-1, DIP-24
文件頁數(shù): 8/30頁
文件大?。?/td> 205K
代理商: SCN2681AC1N24
Philips Semiconductors
Product specification
SCN2681
Dual asynchronous receiver/transmitter (DUART)
1998 Sep 04
8
(IMR) and the Interrupt Status Register (ISR). The IMR may be
programmed to select only certain conditions to cause INTRN to be
asserted. The ISR can be read by the CPU to determine all
currently active interrupting conditions.
Outputs OP3-OP7 can be programmed to provide discrete interrupt
outputs for the transmitter, receivers, and counter/timer.
Timing Circuits
The timing block consists of a crystal oscillator, a baud rate
generator, a programmable 16-bit counter/timer, and four clock
selectors. The crystal oscillator operates directly from a 3.6864MHz
crystal connected across the X1/CLK and X2 inputs. If an external
clock of the appropriate frequency is available, it may be connected
to X1/CLK. The clock serves as the basic timing reference for the
Baud Rate Generator (BRG), the counter/timer, and other internal
circuits. A clock signal within the limits specified in the
specifications section of this data sheet must always be supplied to
the DUART.
If an external clock is used instead of a crystal, both X1 and X2
should use a configuration similar to the one in Figure 7.
The baud rate generator operates from the oscillator or external
clock input and is capable of generating 18 commonly used data
communications baud rates ranging from 50 to 38.4k baud. The
clock outputs from the BRG are at 16X the actual baud rate. The
counter/timer can be used as a timer to produce a 16X clock for any
other baud rate by counting down the crystal clock or an external
clock. The four clock selectors allow the independent selection, for
each receiver and transmitter, of any of these baud rates or external
timing signal.
Counter/Timer (C/T)
The counter timer is a 16 bit programmable divider that operates
one of three modes: Counter, Timer or Time Out mode. In all three
modes it uses the 16-bit value loaded to the CTUR and CTLR
registers. (Counter timer upper and lower preset registers).
In the timer mode it generates a square wave.
In the counter mode it generates a time delay.
In the time out mode it monitors the receiver data flow and signals
data flow has paused. In the time out mode the receiver controls
the starting/stopping of the C/T.
The counter operates as a down counter and sets its output bit in
the ISR (Interrupt Status Register) each time it passes through 0.
The output of the counter/timer may be seen on one of the OP pins
or as an Rx or Tx clock.
The Timer/Counter is controlled with six (6) “commands”; Start C/T,
Stop C/T, write C/T, preset registers, read C/T value, set or reset
time out mode.
Please see the detail of the commands under the Counter/Timer
register descriptions.
Communications Channels A and B
Each communications channel of the SCN2681 comprises a
full-duplex asynchronous receiver/transmitter (UART). The
operating frequency for each receiver and transmitter can be
selected independently from the baud rate generator, the counter
timer, or from an external input.
The transmitter accepts parallel data from the CPU, converts it to a
serial bit stream, inserts the appropriate start, stop, and optional
parity bits and outputs a composite serial stream of data on the TxD
output pin. The receiver accepts serial data on the RxD pin,
converts this serial input to parallel format, checks for start bit, stop
bit, parity bit (if any), or break condition and sends an assembled
character to the CPU.
The input port pulse detection circuitry uses a 38.4kHz sampling
clock derived from one of the baud rate generator taps. This results
in a sampling period of slightly more than 25
μ
s (this assumes that
the clock input is 3.6864MHz). The detection circuitry, in order to
guarantee that a true change in level has occurred, requires two
successive samples at the new logic level be observed. As a
consequence, the minimum duration of the signal change is 25
μ
s if
the transition occurs “coincident with the first sample pulse”. The
50
μ
s time refers to the situation in which the change-of-state is “just
missed” and the first change-of-state is not detected until 25
μ
s later.
Input Port
The inputs to this unlatched 7-bit port can be read by the CPU by
performing a read operation at address D16. A High input results in
a logic 1 while a Low input results in a logic 0. D7 will always read
as a logic 1. The pins of this port can also serve as auxiliary inputs
to certain portions of the DUART logic.
Four change-of-state detectors are provided which are associated
with inputs IP3, IP2, IP1 and IP0. A High-to-Low or Low-to-High
transition of these inputs lasting longer than 25 – 50
μ
s, will set the
corresponding bit in the input port change register. The bits are
cleared when the register is read by the CPU. Any change-of-state
can also be programmed to generate an interrupt to the CPU.
All the IP pins have a small pull-up device that will source 1 to 4 A
of current from V
CC
. These pins do not require pull-up devices or
V
CC
connections if they are not used.
Output Port
The output port pins may be controlled by the OPR, OPCR, MR and
CR registers. Via appropriate programming they may be just
another parallel port to external circuits, or they may represent many
internal conditions of the UART. When this 8-bit port is used as a
general purpose output port, the output port pins drive a state which
is the complement of the Output Port Register (OPR). OPR(n) = 1
results in OP(n) = Low and vice versa. Bits of the OPR can be
individually set and reset. A bit is set by performing a write operation
at address E16 with the accompanying data specifying the bits to be
set (1 = set, 0 = no change).
Likewise, a bit is reset by a write at address F16 with the
accompanying data specifying the bits to be reset (1 = reset, 0 = no
change).
Outputs can be also individually assigned specific functions by
appropriate programming of the Channel A mode registers (MR1A,
MR2A), the Channel B mode registers (MR1B, MR2B), and the
Output Port Configuration Register (OPCR).
Please note that these pins drive both high and low. HOWEVER
when they are programmed to represent interrupt type functions
(such as receiver ready, transmitter ready or counter/timer ready)
they will be switched to an open drain configuration in which case an
external pull-up device would be required.
TRANSMITTER OPERATION
The SCN2681 is conditioned to transmit data when the transmitter is
enabled through the command register. The SCN2681 indicates to
the CPU that it is ready to accept a character by setting the TxRDY
bit in the status register. This condition can be programmed to
相關(guān)PDF資料
PDF描述
SCN2681AC1N28 Dual asynchronous receiver/transmitter DUART
SCN2681TC1N40 Dual asynchronous receiver/transmitter DUART
SCN2681T Dual asynchronous receiver/transmitter DUART
SCN2681TC1A44 Dual asynchronous receiver/transmitter DUART
SCN68562C2A52 Communications Controller
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
SCN2681AC1N28 制造商:NXP Semiconductors 功能描述:
SCN2681AC1N40 制造商:NXP Semiconductors 功能描述: 制造商:NXP Semiconductors 功能描述:UART, 40 Pin, Plastic, DIP
SCN2681AE1A44 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Dual asynchronous receiver/transmitter DUART
SCN2681AE1N24 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Dual asynchronous receiver/transmitter DUART
SCN2681AE1N28 制造商:PHILIP 功能描述: