參數(shù)資料
型號: SE5230DR2
廠商: ON Semiconductor
文件頁數(shù): 17/18頁
文件大小: 0K
描述: IC OPAMP LOW VOLTAGE 8-SOIC
產(chǎn)品變化通告: Product Obsolescence 11/Feb/2009
標(biāo)準(zhǔn)包裝: 2,500
放大器類型: 通用
電路數(shù): 1
輸出類型: 滿擺幅
轉(zhuǎn)換速率: 0.25 V/µs
增益帶寬積: 600kHz
電流 - 輸入偏壓: 40nA
電壓 - 輸入偏移: 400µV
電流 - 電源: 1.1mA
電流 - 輸出 / 通道: 32mA
電壓 - 電源,單路/雙路(±): 1.8 V ~ 15 V,±0.9 V ~ 7.5 V
工作溫度: -40°C ~ 125°C
安裝類型: 表面貼裝
封裝/外殼: 8-SOIC(0.154",3.90mm 寬)
供應(yīng)商設(shè)備封裝: 8-SOICN
包裝: 帶卷 (TR)
NE5230, SA5230, SE5230
http://onsemi.com
8
THERMAL CONSIDERATIONS
When using the NE5230, the internal power dissipation
capabilities of each package should be considered.
ON Semiconductor does not recommend operation at die
temperatures above 110
°C in the SO package because of its
inherently smaller package mass. Die temperatures of
150
°C can be tolerated in all the other packages. With this
in mind, the following equation can be used to estimate the
die temperature:
Tj + Tamb ) (PD
qJA)
(eq. 1)
Where
Tamb= Ambient Temperature
Tj = Die Temperature
PD = Power Dissipation
= (ICC x VCC)
qJA = Package Thermal Resistance
= 270
°C/W for SO8 in PC Board Mounting
See the packaging section for information regarding other
methods of mounting.
qJA 100°C/W for the plastic DIP.
The maximum supply voltage for the part is 15 V and the
typical supply current is 1.1 mA (1.6 mA max). For
operation at supply voltages other than the maximum, see
the data sheet for ICC versus VCC curves. The supply current
is somewhat proportional to temperature and varies no more
than 100
mA between 25°C and either temperature extreme.
Operation at higher junction temperatures than that
recommended is possible but will result in lower Mean Time
Between Failures (MTBF). This should be considered
before operating beyond recommended die temperature
because of the overall reliability degradation.
DESIGN TECHNIQUES AND APPLICATIONS
The NE5230 is a very userfriendly amplifier for an
engineer to design into any type of system. The supply
current adjust pin (Pin 5) can be left open or tied through a
pot or fixed resistor to the most negative supply (i.e., ground
for single supply or to the negative supply for split supplies).
The minimum supply current is achieved by leaving this pin
open. In this state it will also decrease the bandwidth and
slew rate. When tied directly to the most negative supply, the
device has full bandwidth, slew rate and ICC. The
programming of the currentcontrol pin depends on the
tradeoffs which can be made in the designer’s application.
The graphs in Figures 3 and 4 will help by showing
bandwidth versus ICC. As can be seen, the supply current can
be varied anywhere over the range of 100
mA to 600 mA for
a supply voltage of 1.8 V. An external resistor can be
inserted between the current control pin and the most
negative supply. The resistor can be selected between 1.0
W
to 100 k
W to provide any required supply current over the
indicated range. In addition, a small varying voltage on the
bias current control pin could be used for such exotic things
as changing the gainbandwidth for voltage controlled low
pass filters or amplitude modulation. Furthermore, control
over the slew rate and the rise time of the amplifier can be
obtained in the same manner. This control over the slew rate
also changes the settling time and overshoot in pulse
response applications. The settling time to 0.1% changes
from 5.0
ms at low bias to 2.0 ms at high bias. The supply
current control can also be utilized for waveshaping
applications such as for pulse or triangular waveforms. The
gainbandwidth can be varied from between 250 kHz at low
bias to 600 kHz at high bias current. The slew rate range is
0.08 V/
ms at low bias and 0.25 V/ms at high bias.
Figure 3. Unity Gain Bandwidth vs. Power Supply
Current for VCC = ±0.9 V
Figure 4. ICC Current vs. Bias Current Adjusting
Resistor for Several Supply Voltages
800
700
600
500
400
300
200
100
200
300
400 500 600700
UNITY GAIN BANDWIDTH (kHz)
TA 25°C
VCC 15V
VCC 12V
VCC 9V
VCC 6V
VCC 3V
VCC 2V
VCC 1.8V
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
100
101
102
103
104
105
RADJ (W)
POWER
SUPPL
Y
CURRENT
(m
A)
I CC
CURRENT
(mA)
相關(guān)PDF資料
PDF描述
SFB0212HH-F00 BLOWER 12VDC TACH 125X38X45MM
SFB0412VH-F00 BLOWER 12VDC 195.2x108.6x33MM
SG1 GASKET FOR SEALING NEMA APPLIC
SI8540-B-FW IC CURRENT SENSOR AMP SOT23-5
SMP04EQ IC AMP SAMPLE HOLD CMOS 16CDIP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
SE5230DR2G 功能描述:運(yùn)算放大器 - 運(yùn)放 LOW VOLTAGE OP-AMP RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補(bǔ)償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-16 轉(zhuǎn)換速度:0.89 V/us 關(guān)閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel
SE5234N,112 功能描述:運(yùn)算放大器 - 運(yùn)放 MATCHED QUAD HI-PER OPAMP40-85 RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補(bǔ)償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-16 轉(zhuǎn)換速度:0.89 V/us 關(guān)閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel
SE5234N/01,112 功能描述:IC OPAMP MATCHED QUAD HP 14-DIP RoHS:是 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 放大器類型:電壓反饋 電路數(shù):4 輸出類型:滿擺幅 轉(zhuǎn)換速率:33 V/µs 增益帶寬積:20MHz -3db帶寬:30MHz 電流 - 輸入偏壓:2nA 電壓 - 輸入偏移:3000µV 電流 - 電源:2.5mA 電流 - 輸出 / 通道:30mA 電壓 - 電源,單路/雙路(±):4.5 V ~ 16.5 V,±2.25 V ~ 8.25 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:14-SOIC(0.154",3.90mm 寬) 供應(yīng)商設(shè)備封裝:14-SOIC 包裝:帶卷 (TR)
SE529H 制造商:SNT 功能描述:
SE529K 制造商:Texas Instruments 功能描述:IC COMPARATOR HS DIFF TO100-10 制造商:Texas Instruments 功能描述:High Speed Differential Comparator