參數(shù)資料
型號(hào): TLV2543CDBRG4
廠商: TEXAS INSTRUMENTS INC
元件分類: ADC
英文描述: 11-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20
封裝: GREEN, PLASTIC, SSOP-20
文件頁數(shù): 26/28頁
文件大小: 553K
代理商: TLV2543CDBRG4
TLV2543C, TLV2543I
12-BIT ANALOG-TO-DIGITAL CONVERTERS
WITH SERIAL CONTROL AND 11 ANALOG INPUTS
SLAS096C – MARCH 1995 – REVISED JUNE 2000
7
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
EOC output
The EOC signal indicates the beginning and the end of conversion. In the reset state, EOC is always high. During
the sampling period (beginning after the fourth falling edge of the I/O CLOCK sequence), EOC remains high
until the internal sampling switch of the converter is safely opened. The opening of the sampling switch occurs
after the eighth, twelfth, or sixteenth I/O CLOCK falling edge, depending on the data-length selection in the input
data register. After the EOC signal goes low, the analog input signal can be changed without affecting the
conversion result.
The EOC signal goes high again after the conversion completes and the conversion result is latched into the
output data register. The rising edge of EOC returns the converter to a reset state and a new I/O cycle begins.
On the rising edge of EOC, the first bit of the current conversion result is on DATA OUT when CS is low. When
CS is negated between conversions, the first bit of the current conversion result occurs at DATA OUT on the
falling edge of CS.
data format and pad bits
D3 and D2 of the input data register determine the number of significant bits in the digital output that represent
the conversion result. The LSB-first bit determines the direction of the data transfer while the BIP bit determines
the arithmetic conversion. The numerical data is always justified toward the MSB in any output format.
The internal conversion result is always 12 bits long. When an 8-bit data transfer is selected, the four LSBs of
the internal result are discarded to provide a faster one-byte transfer. When a 12-bit transfer is used, all bits are
transferred. When a 16-bit transfer is used, four LSB pad bits are always appended to the internal conversion
result. In the LSB-first mode, four leading zeros are output. In the MSB-first mode, the last four bits output are
zeros.
When CS is held low continuously, the first data bit of the just completed conversion occurs on DATA OUT on
the rising edge of EOC. When a new conversion is started after the last falling edge of I/O CLOCK, EOC goes
low and the serial output is forced to a logic zero until EOC goes high again.
When CS is negated between conversions, the first data bit occurs on DATA OUT on the falling edge of CS.
On each subsequent falling edge of I/O CLOCK after the first data bit appears, the data is changed to the next
bit in the serial conversion result until the required number of bits has been output.
chip-select input (CS)
The chip-select input (CS) enables and disables the device. During normal operation, CS should be low.
Although the use of CS is not necessary to synchronize a data transfer, it can be brought high between
conversions to coordinate the data transfer of several devices sharing the same bus.
When CS is brought high, the serial-data output is immediately brought to the high-impedance state, releasing
its output data line to other devices that may share it. After an internally generated debounce time, the I/O
CLOCK is inhibited, thus preventing any further change in the internal state.
When CS is subsequently brought low again, the device is reset. CS must be held low for an internal debounce
time before the reset operation takes effect. After CS is debounced low, I/O CLOCK must remain inactive (low)
for a minimum time before a new I/O cycle can start.
CS can be used to interrupt any ongoing data transfer or any ongoing conversion. When CS is debounced low
long enough before the end of the current conversion cycle, the previous conversion result is saved in the
internal output buffer and then shifted out during the next I/O cycle.
相關(guān)PDF資料
PDF描述
TLV2543CNE4 11-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDIP20
TLV2543IDBRG4 11-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20
TLV2543INE4 11-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDIP20
TLV2543CDWG4 11-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20
TLV2543IDWG4 11-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
TLV2543CDW 功能描述:模數(shù)轉(zhuǎn)換器 - ADC 12bit ADC w/11Chl RoHS:否 制造商:Texas Instruments 通道數(shù)量:2 結(jié)構(gòu):Sigma-Delta 轉(zhuǎn)換速率:125 SPs to 8 KSPs 分辨率:24 bit 輸入類型:Differential 信噪比:107 dB 接口類型:SPI 工作電源電壓:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-32
TLV2543CDWG4 功能描述:模數(shù)轉(zhuǎn)換器 - ADC 12-Bit 66 kSPS Serial Out RoHS:否 制造商:Texas Instruments 通道數(shù)量:2 結(jié)構(gòu):Sigma-Delta 轉(zhuǎn)換速率:125 SPs to 8 KSPs 分辨率:24 bit 輸入類型:Differential 信噪比:107 dB 接口類型:SPI 工作電源電壓:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-32
TLV2543CDWR 功能描述:模數(shù)轉(zhuǎn)換器 - ADC 12-Bit 66 kSPS Serial Out RoHS:否 制造商:Texas Instruments 通道數(shù)量:2 結(jié)構(gòu):Sigma-Delta 轉(zhuǎn)換速率:125 SPs to 8 KSPs 分辨率:24 bit 輸入類型:Differential 信噪比:107 dB 接口類型:SPI 工作電源電壓:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-32
TLV2543CDWRG4 功能描述:模數(shù)轉(zhuǎn)換器 - ADC 12-Bit 66 kSPS Serial Out RoHS:否 制造商:Texas Instruments 通道數(shù)量:2 結(jié)構(gòu):Sigma-Delta 轉(zhuǎn)換速率:125 SPs to 8 KSPs 分辨率:24 bit 輸入類型:Differential 信噪比:107 dB 接口類型:SPI 工作電源電壓:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-32
TLV2543CN 功能描述:模數(shù)轉(zhuǎn)換器 - ADC 12bit ADC w/11Chl RoHS:否 制造商:Texas Instruments 通道數(shù)量:2 結(jié)構(gòu):Sigma-Delta 轉(zhuǎn)換速率:125 SPs to 8 KSPs 分辨率:24 bit 輸入類型:Differential 信噪比:107 dB 接口類型:SPI 工作電源電壓:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-32