ADC PGA SIGNAL BYPASS PATH FUNCTIONALITY
INPUT IMPEDANCE AND VCM CONTROL
MICBIAS GENERATION
DIGITAL MICROPHONE CONNECTIVITY
SLAS480B – JANUARY 2006 – REVISED DECEMBER 2008 ........................................................................................................................................... www.ti.com
In addition to the input bypass path described above, the TLV320AIC33 also includes the ability to route the ADC
PGA output signals past the ADC, for mixing with other analog signals and then direction connection to the
output drivers. These bypass functions are described in more detail in the sections on output mixing and output
driver configurations.
The TLV320AIC33 includes several programmable settings to control analog input pins, particularly when they
are not selected for connection to an ADC PGA. The default option allows unselected inputs to be put into a
tri-state condition, such that the input impedance seen looking into the device is extremely high. Note, however,
that the pins on the device do include protection diode circuits connected to AVDD and AVSS. Thus, if any
voltage is driven onto a pin approximately one diode drop (~0.6 V) above AVDD or one diode drop below AVSS,
these protection diodes will begin conducting current, resulting in an effective impedance that no longer appears
as a tri-state condition.
Another programmable option for unselected analog inputs is to weakly hold them at the common-mode input
voltage of the ADC PGA (which is determined by an internal bandgap voltage reference). This is useful to keep
the ac-coupling capacitors connected to analog inputs biased up at a normal DC level, thus avoiding the need for
them to charge up suddenly when the input is changed from being unselected to selected for connection to an
ADC PGA. This option is controlled in Page-0/Reg-20 and 23. The user should ensure this option is disabled
when an input is selected for connection to an ADC PGA or selected for the analog input bypass path, since it
can corrupt the recorded input signal if left operational when an input is selected.
In most cases, the analog input pins on the TLV320AIC33 should be ac-coupled to analog input sources, the
only exception to this generally being if an ADC is being used for DC voltage measurement. The ac-coupling
capacitor will cause a highpass filter pole to be inserted into the analog signal path, so the size of the capacitor
must be chosen to move that filter pole sufficiently low in frequency to cause minimal effect on the processed
analog signal. The input impedance of the analog inputs when selected for connection to an ADC PGA varies
with the setting of the input level control, starting at approximately 20 k
with an input level control setting of
0-dB, and increasing to approximately 80-k
when the input level control is set at –12 dB. For example, using a
0.1
F ac-coupling capacitor at an analog input will result in a highpass filter pole of 80 Hz when the 0 dB input
level control setting is selected.
The TLV320AIC33 includes a programmable microphone bias output voltage (MICBIAS), capable of providing
output voltages of 2.0 V or 2.5 V (both derived from the on-chip bandgap voltage) with 4-mA output current drive.
In addition, the MICBIAS may be programmed to be switched to AVDD directly through an on-chip switch, or it
can be powered down completely when not needed, for power savings. This function is controlled by register
programming in Page-0/Reg-25.
The TLV320AIC33 includes support for connection of a digital microphone to the device by routing the digital
signal directly into the ADC digital decimation filter, where it is filtered, downsampled, and provided to the host
processor over the audio data serial bus.
When digital microphone mode is enabled, the TLV320AIC33 provides an oversampling clock output for use by
the digital microphone to transmit its data. The TLV320AIC33 includes the capability to latch the data on either
the rising, falling, or both edges of this supplied clock, enabling support for stereo digital microphones.
In this mode, the oversampling ratio of the digital mic modulator can be programmed as 128, 64 or 32 times the
ADC sample rate, ADCFS. The GPIO1 pin will output the serial oversampling clock at the programmed rate.
TLV320AIC33 latches the data input on GPIO2 as the Left and Right channel digital microphone data. For the
Left channel input, GPIO2 will be sampled on the rising edge of the clock, and for the Right channel input,
GPIO2 will be sampled on the falling edge of the clock. If a single digital mic channel is needed then the
corresponding ADC channel should be powered up, and the unused channel should be powered down. When
digital microphone mode is enabled, neither ADC can be used for digitizing analog inputs.
38
Copyright 2006–2008, Texas Instruments Incorporated