11
EDO DRAM
NOTES
1. All voltages referenced to VSS.
2. This parameter is sampled. VCC = +3.3V; f = 1
MHz; TA = 25°C.
3. ICC is dependent on output loading and cycle
rates. Specified values are obtained with mini-
mum cycle time and the outputs open.
4. Enables on-chip refresh and address counters.
5. The minimum specifications are used only to
indicate cycle time at which proper operation
over the full temperature range is ensured.
6. An initial pause of 100s is required after power-
up, followed by eight RAS# refresh cycles (RAS#-
ONLY or CBR with WE# HIGH), before proper
device operation is ensured. The eight RAS# cycle
wake-ups should be repeated any time the tREF
refresh requirement is exceeded.
7. AC characteristics assume tT = 2.5ns.
8. VIH (MIN) and VIL (MAX) are reference levels for
measuring timing of input signals. Transition
times are measured between VIH and VIL (or
between VIL and VIH).
9. In addition to meeting the transition rate
specification, all input signals must transit
between VIH and VIL (or between VIL and VIH) in a
monotonic manner.
10. If CAS# and RAS# = VIH, data output is High-Z.
11. If CAS# = VIL, data output may contain data from
the last valid READ cycle.
12. Measured with a load equivalent to two TTL
gates and 100pF; and VOL = 0.8V and VOH = 2V.
13. If CAS# is LOW at the falling edge of RAS#,
output data will be maintained from the previous
cycle. To initiate a new cycle and clear the data-
out buffer, CAS# must be pulsed HIGH for tCP.
14. The tRCD (MAX) limit is no longer specified.
tRCD (MAX) was specified as a reference point
only. If tRCD was greater than the specified tRCD
(MAX) limit, then access time was controlled
exclusively by tCAC (tRAC [MIN] no longer
applied). With or without the tRCD limit, tAA
and tCAC must always be met.
15. The tRAD (MAX) limit is no longer specified.
tRAD (MAX) was specified as a reference point
only. If tRAD was greater than the specified tRAD
(MAX) limit, then access time was controlled
exclusively by tAA (tRAC and tCAC no longer
applied). With or without the tRAD (MAX) limit,
tAA, tRAC, and tCAC must always be met.
16. Either tRCH or tRRH must be satisfied for a READ
cycle.
17. tOFF (MAX) defines the time at which the output
achieves the open circuit condition and is not
referenced to VOH or VOL.
18. tWCS, tRWD, tAWD, and tCWD are not restrictive
operating parameters. tWCS applies to EARLY
WRITE cycles. If tWCS > tWCS (MIN), the cycle is
an EARLY WRITE cycle and the data output will
remain an open circuit throughout the entire
cycle. tRWD, tAWD, and tCWD define READ-
MODIFY-WRITE cycles. Meeting these limits
allows for reading and disabling output data and
then applying input data. OE# held HIGH and
WE# taken LOW after CAS# goes LOW results in a
LATE WRITE (OE#-controlled) cycle. tWCS, tRWD,
tCWD, and tAWD are not applicable in a LATE
WRITE cycle.
19. These parameters are referenced to CAS# leading
edge in EARLY WRITE cycles and WE# leading
edge in LATE WRITE or READ-MODIFY-WRITE
cycles.
20. If OE# is tied permanently LOW, LATE WRITE, or
READ-MODIFY-WRITE operations are not
possible.
21. A HIDDEN REFRESH may also be performed after
a WRITE cycle. In this case, WE# is LOW and
OE# is HIGH.
22. RAS#-ONLY REFRESH requires that all 8,192 rows
of the ARC8V4M16E or all 4,096 rows of the
4X16E43V be refreshed at least once every
64ms.
23. CBR REFRESH for either device requires that at
least 4,096 cycles be completed every 64ms.
24. The DQs go High-Z during READ cycles once tOD
or tOFF occur. If CAS# stays LOW while OE# is
brought HIGH, the DQs will go High-Z. If OE# is
brought back LOW (CAS# still LOW), the DQs
will provide the previously read data.
25. LATE WRITE and READ-MODIFY-WRITE cycles
must have both tOD and tOEH met (OE# HIGH
during WRITE cycle) in order to ensure that the
output buffers will be open during the WRITE
cycle. If OE# is taken back LOW while CAS#
remains LOW, the DQs will remain open.
26. Column address changed once each cycle.
27. The first CASx# edge to transition LOW.
4 MEG x 16
EDO DRAM