REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
a
AD5207
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
Fax: 781/326-8703
Analog Devices, Inc., 2001
2-Channel, 256-Position
Digital Potentiometer
FUNCTIONAL BLOCK DIAGRAM
RDAC1 REGISTER
R
RDAC2 REGISTER
R
POWER-
ON
RESET
LOGIC
SERIAL INPUT REGISTER
AD5207
8
SDO
DGND
SDI
CS
VSS
SHDN
VDD
A1
W1
B1
A2
W2
B2
CLK
FEATURES
256-Position, 2-Channel
Potentiometer Replacement
10 k , 50 k , 100 k
Power Shut-Down, Less than 5
A
2.7 V to 5.5 V Single Supply
2.7 V Dual Supply
3-Wire SPI-Compatible Serial Data Input
Midscale Preset During Power-On
APPLICATIONS
Mechanical Potentiometer Replacement
Stereo Channel Audio Level Control
Instrumentation: Gain, Offset Adjustment
Programmable Voltage-to-Current Conversion
Programmable Filters, Delays, Time Constants
Line Impedance Matching
Automotive Electronics Adjustment
GENERAL DESCRIPTION
The AD5207 provides dual channel, 256-position, digitally
controlled variable resistor (VR) devices that perform the same
electronic adjustment function as a potentiometer or variable
resistor. Each channel of the AD5207 contains a fixed resistor with
a wiper contact that taps the fixed resistor value at a point
determined by a digital code loaded into the SPI-compatible
serial-input register. The resistance between the wiper and either
end point of the fixed resistor varies linearly with respect to the
digital code transferred into the VR latch. The variable resistor
offers a completely programmable value of resistance, between
the A Terminal and the wiper or the B Terminal and the wiper.
The fixed A-to-B terminal resistance of 10 k
, 50 k or 100 k
has a
±1% channel-to-channel matching tolerance with a nomi-
nal temperature coefficient of 500 ppm/
°C. A unique switching
circuit minimizes the high glitch inherent in traditional switched
resistor designs and avoids any make-before-break or break-
before-make operation.
Each VR has its own VR latch, which holds its programmed
resistance value. These VR latches are updated from an internal
serial-to-parallel shift register, which is loaded from a standard
3-wire serial-input digital interface. Ten bits, to make up the
data word, are required and clocked into the serial input register.
The first two bits are address bits. The following eight bits are
the data bits that represent the 256 steps of the resistance value.
The reason for two address bits instead of one is to be compatible
with similar products such as AD8402 so that drop-in replacement
is possible. The address bit determines the corresponding VR
latch to be loaded with the data bits during the returned positive
edge of
CS strobe. A serial data output pin at the opposite end
of the serial register allows simple daisy chaining in multiple
VR applications without additional external decoding logic.
An internal reset block will force the wiper to the midscale posi-
tion during every power-up condition. The
SHDN pin forces an
open circuit on the A Terminal and at the same time shorts the
wiper to the B Terminal, achieving a microwatt power shutdown
state. When
SHDN is returned to logic high, the previous latch
settings put the wiper in the same resistance setting prior to
shutdown. The digital interface remains active during shutdown;
code changes can be made to produce new wiper positions when
the device is resumed from shutdown.
The AD5207 is available in 1.1 mm thin TSSOP-14 package,
which is suitable for PCMCIA applications. All parts are guaran-
teed to operate over the extended industrial temperature range
of –40
°C to +125°C.