參數(shù)資料
型號(hào): AD7710AR
廠商: Analog Devices Inc
文件頁數(shù): 8/32頁
文件大?。?/td> 0K
描述: IC ADC 24BIT DIFF INP 24-SOIC
標(biāo)準(zhǔn)包裝: 1
位數(shù): 24
采樣率(每秒): 1.03k
數(shù)據(jù)接口: 串行
轉(zhuǎn)換器數(shù)目: 1
功率耗散(最大): 45mW
電壓電源: 模擬和數(shù)字,雙 ±
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 24-SOIC(0.295",7.50mm 寬)
供應(yīng)商設(shè)備封裝: 24-SOIC W
包裝: 管件
輸入數(shù)目和類型: 2 個(gè)差分,單極;2 個(gè)差分,雙極
REV. G
–16–
AD7710
Bipolar/Unipolar Inputs
The two analog inputs on the AD7710 can accept either unipo-
lar or bipolar input voltage ranges. Bipolar or unipolar options
are chosen by programming the B/U bit of the control register.
This programs both channels for either type of operation.
Programming the part for either unipolar or bipolar operation
does not change any of the input signal conditioning; it sim-
ply changes the data output coding, using binary for unipolar
inputs and offset binary for bipolar inputs.
The input channels are differential and, as a result, the voltage
to which the unipolar and bipolar signals are referenced is the
voltage on the AIN(–) input. For example, if AIN(–) is 1.25 V
and the AD7710 is configured for unipolar operation with a
gain of 1 and a VREF of 2.5 V, the input voltage range on the
AIN(+) input is 1.25 V to 3.75 V. If AIN(–) is 1.25 V and
the AD7710 is configured for bipolar mode with a gain of 1
and a VREF of 2.5 V, the analog input range on the AIN(+)
input is –1.25 V to +3.75 V.
REFERENCE INPUT/OUTPUT
The AD7710 contains a temperature compensated 2.5 V refer-
ence which has an initial tolerance of
±1%. This reference volt-
age is provided at the REF OUT pin, and it can be used as the
reference voltage for the part by connecting the REF OUT pin
to the REF IN(+) pin. This REF OUT pin is a single-ended
output, referenced to AGND, which is capable of providing up
to 1 mA to an external load. In applications where REF OUT is
connected to REF IN(+), REF IN(–) should be tied to AGND
to provide the nominal 2.5 V reference for the AD7710.
The reference inputs of the AD7710, REF IN(+) and REF IN(–)
provide a differential reference input capability. The common-
mode range for these differential inputs is from VSS to AVDD.
The nominal differential voltage, VREF (REF IN(+) – REF IN(–)),
is 2.5 V for specified operation, but the reference voltage can go
to 5 V with no degradation in performance if the absolute value
of REF IN(+) and REF IN(–) does not exceed its AVDD and
VSS limits, and the VBIAS input voltage range limits are obeyed.
The part is also functional with VREF voltage down to 1 V but
with degraded performance because the output noise will, in
terms of LSB size, be larger. REF IN(+) must always be greater
than REF IN(–) for correct operation of the AD7710.
Both reference inputs provide a high impedance, dynamic load
similar to the analog inputs. The maximum dc input leakage cur-
rent is 10 pA (
±1 nA over temperature), and source resistance may
result in gain errors on the part. The reference inputs look like the
analog input (see Figure 7). In this case, RINT is 5 k
typ and C
INT
varies with gain. The input sample rate is fCLK IN/256 and does not
vary with gain. For gains of 1 to 8, CINT is 20 pF; for a gain of 16,
it is 10 pF; for a gain of 32, it is 5 pF; for a gain of 64, it is 2.5 pF;
and for a gain of 128, it is 1.25 pF.
The digital filter of the AD7710 removes noise from the reference
input just as it does with the analog input, and the same limita-
tions apply regarding lack of noise rejection at integer multiples
of the sampling frequency. The output noise performance
outlined in Tables I and II assumes a clean reference. If the
reference noise in the bandwidth of interest is excessive, it can
degrade the performance of the AD7710. Using the on-chip
reference as the reference source for the part (that is, connecting
REF OUT to REF IN) results in degraded output noise perfor-
mance from the AD7710 for portions of the noise table that are
dominated by the device noise. The on-chip reference noise
effect is eliminated in ratiometric applications where the refer-
ence is used to provide the excitation voltage for the analog
front end. The connection scheme, shown in Figure 8, is recom-
mended when using the on-chip reference. Recommended refer-
ence voltage sources for the AD7710 include the AD580 and
AD680 2.5 V references.
REF OUT
REF IN (+)
AD7710
REF IN (–)
Figure 8. REF OUT/REF IN Connection
VBIAS Input
The VBIAS input determines at what voltage the internal analog
circuitry is biased. It essentially provides the return path for
analog currents flowing in the modulator and, as such, it should
be driven from a low impedance point to minimize errors.
For maximum internal headroom, the VBIAS voltage should be
set halfway between AVDD and VSS. The difference between
AVDD and (VBIAS + 0.85
× V
REF) determines the amount of
headroom the circuit has at the upper end, while the difference
between VSS and (VBIAS – 0.85
× VREF) determines the amount
of headroom the circuit has at the lower end. When choosing a
VBIAS voltage, ensure that it stays within prescribed limits. For
single 5 V operation, the selected VBIAS voltage must ensure that
VBIAS
± 0.85 × V
REF does not exceed AVDD or VSS or that the
VBIAS voltage itself is greater than VSS + 2.1 V and less than
AVDD – 2.1 V. For single 10 V operation or dual
±5 V opera-
tion, the selected VBIAS voltage must ensure that VBIAS
± 0.85 ×
VREF does not exceed AVDD or VSS, or that the VBIAS voltage
itself is greater than VSS + 3 V or less than AVDD –3 V. For
example, with AVDD = 4.75 V, VSS = 0 V, and VREF = 2.5 V, the
allowable range for the VBIAS voltage is 2.125 V to 2.625 V.
With AVDD = 9.5 V, VSS = 0 V, and VREF = 5 V, the range for
VBIAS is 4.25 V to 5.25 V. With AVDD = +4.75 V, VSS = –4.75 V,
and VREF = +2.5 V, the VBIAS range is –2.625 V to +2.625 V.
The VBIAS voltage does have an effect on the AVDD power supply
rejection performance of the AD7710. If the VBIAS voltage tracks
the AVDD supply, it improves the power supply rejection from
the AVDD supply line from 80 dB to 95 dB. Using an external
Zener diode, connected between the AVDD line and VBIAS, as the
source for the VBIAS voltage gives the improvement in AVDD
power supply rejection performance.
相關(guān)PDF資料
PDF描述
VI-20R-MY CONVERTER MOD DC/DC 7.5V 50W
VI-20P-MY CONVERTER MOD DC/DC 13.8V 50W
IDT72V225L15TF8 IC FIFO SYNC 1024X18 15NS 64QFP
MS27467T21B16P CONN PLUG 16POS STRAIGHT W/PINS
MS3122E10-6SW CONN RCPT 6POS BOX MOUNT W/SCKT
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD7710AR-REEL 功能描述:IC ADC 24BIT DIFF INP 24-SOIC RoHS:否 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:- 位數(shù):14 采樣率(每秒):83k 數(shù)據(jù)接口:串行,并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):95mW 電壓電源:雙 ± 工作溫度:0°C ~ 70°C 安裝類型:通孔 封裝/外殼:28-DIP(0.600",15.24mm) 供應(yīng)商設(shè)備封裝:28-PDIP 包裝:管件 輸入數(shù)目和類型:1 個(gè)單端,雙極
AD7710AR-REEL7 功能描述:IC ADC 24BIT DIFF INP 24-SOIC RoHS:否 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:- 位數(shù):14 采樣率(每秒):83k 數(shù)據(jù)接口:串行,并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):95mW 電壓電源:雙 ± 工作溫度:0°C ~ 70°C 安裝類型:通孔 封裝/外殼:28-DIP(0.600",15.24mm) 供應(yīng)商設(shè)備封裝:28-PDIP 包裝:管件 輸入數(shù)目和類型:1 個(gè)單端,雙極
AD7710ARZ 功能描述:IC ADC 24BIT DIFF INP 24-SOIC RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:microPOWER™ 位數(shù):8 采樣率(每秒):1M 數(shù)據(jù)接口:串行,SPI? 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):- 電壓電源:模擬和數(shù)字 工作溫度:-40°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:24-VFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:24-VQFN 裸露焊盤(4x4) 包裝:Digi-Reel® 輸入數(shù)目和類型:8 個(gè)單端,單極 產(chǎn)品目錄頁面:892 (CN2011-ZH PDF) 其它名稱:296-25851-6
AD7710ARZ 制造商:Analog Devices 功能描述:IC ADC 24BIT 1.02KSPS SOIC-24
AD7710ARZ-REEL 功能描述:IC ADC 24BIT DIFF INP 24-SOIC RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:- 位數(shù):14 采樣率(每秒):83k 數(shù)據(jù)接口:串行,并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):95mW 電壓電源:雙 ± 工作溫度:0°C ~ 70°C 安裝類型:通孔 封裝/外殼:28-DIP(0.600",15.24mm) 供應(yīng)商設(shè)備封裝:28-PDIP 包裝:管件 輸入數(shù)目和類型:1 個(gè)單端,雙極