10-Bit, 65/80/105 MSPS
Dual A/D Converter
AD9216
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
Fax: 781.461.3113
2005 Analog Devices, Inc. All rights reserved.
FEATURES
Integrated dual 10-bit ADC
Single 3 V supply operation
SNR = 57.6 dBc (to Nyquist, AD9216-105)
SFDR = 74 dBc (to Nyquist, AD9216-105)
Low power: 150 mW/ch at 105 MSPS
Differential input with 300 MHz 3 dB bandwidth
Exceptional crosstalk immunity < -80 dB
Offset binary or twos complement data format
Clock duty cycle stabilizer
APPLICATIONS
Ultrasound equipment
IF sampling in communications receivers
3G, radio point-to-point, LMDS, MMDS
Battery-powered instruments
Hand-held scopemeters
Low cost digital oscilloscopes
GENERAL DESCRIPTION
The AD9216 is a dual, 3 V, 10-bit, 105 MSPS analog-to-digital
converter (ADC). It features dual high performance sample-
and-hold amplifiers (SHAs) and an integrated voltage reference.
The AD9216 uses a multistage differential pipelined archi-
tecture with output error correction logic to provide 10-bit
accuracy and guarantee no missing codes over the full
operating temperature range at up to 105 MSPS data rates.
The wide bandwidth, differential SHA allows for a variety of
user selectable input ranges and offsets, including single-ended
applications. The AD9216 is suitable for various applications,
including multiplexed systems that switch full-scale voltage
levels in successive channels and for sampling inputs at
frequencies well beyond the Nyquist rate.
Dual single-ended clock inputs are used to control all internal
conversion cycles. A duty cycle stabilizer is available on the
AD9216 and can compensate for wide variations in the clock
duty cycle, allowing the converters to maintain excellent
performance. The digital output data is presented in either
straight binary or twos complement format.
FUNCTIONAL BLOCK DIAGRAM
VIN+_A
VIN–_A
REFT_A
REFB_A
VREF
SENSE
AGND
REFT_B
REFB_B
VIN+_B
VIN–_B
D9_A–D0_A
OEB_A
MUX_SELECT
CLK_A
CLK_B
DCS
SHARED_REF
PWDN_A
PWDN_B
DFS
D9_B–D0_B
OEB_B
AVDD
AGND
DRVDD DRGND
10
AD9216
10
0.5V
OUTPUT
MUX/
BUFFERS
10
OUTPUT
MUX/
BUFFERS
CLOCK
DUTY CYCLE
STABILIZER
MODE
CONTROL
ADC
SHA
04775-001
Figure 1.
Fabricated on an advanced CMOS process, the AD9216 is avail-
able in a space saving, Pb-free, 64-lead LFCSP (9 mm × 9 mm) and
is specified over the industrial temperature range (40°C to
+85°C).
PRODUCT HIGHLIGHTS
1. Pin compatible with AD9238, dual 12-bit 20 MSPS/40 MSPS/
65 MSPS ADC and AD9248, dual 14-bit 20 MSPS/40 MSPS/
65 MSPS ADC.
2. 105 MSPS capability allows for demanding, high frequency
applications.
3. Low power consumption: AD9216–105: 105 MSPS = 300 mW.
4. The patented SHA input maintains excellent performance for
input frequencies up to 200 MHz and can be configured for
single-ended or differential operation.
5. Typical channel crosstalk of < 80 dB at fIN up to 70 MHz.
6. The clock duty cycle stabilizer maintains performance over a
wide range of clock duty cycles.