AD9279
Rev. 0 | Page 29 of 44
Figure 61 shows the typical reduction of AVDD2 current with
each bias setting. It is also recommended that the LNA offset be
adjusted using Register 0x10 (see
Table 19) when the LNA bias
setting is low.
HIGH
MID-HIGH
MID-LOW
LOW
180
190
200
210
220
230
240
250
260
TOTAL AVDD2 CURRENT (mA)
L
NA
BI
AS
S
E
T
ING
09
42
3-
06
3
Figure 61. AVDD2 Current at Different LNA Bias Settings, fSAMPLE = 40 MSPS
By asserting the PDWN pin high, the AD9279 is placed into
power-down mode. In this state, the device typically dissipates
5 mW. During power-down, the LVDS output drivers are placed
into a high impedance state. The AD9279 returns to normal
operating mode when the PDWN pin is pulled low. This pin
is both 1.8 V and 3.3 V tolerant.
By asserting the STBY pin high, the AD9279 is placed into a
standby mode. In this state, the device typically dissipates
175 mW. During standby, the entire part is powered down
except the internal references. The LVDS output drivers are
placed into a high impedance state. This mode is well suited for
applications that require power savings because it allows the
device to be powered down when not in use and then quickly
powered up. The time to power the device back up is also greatly
reduced. The AD9279 returns to normal operating mode when
the STBY pin is pulled low. This pin is both 1.8 V and 3.3 V
tolerant.
In power-down mode, low power dissipation is achieved by
shutting down the reference, reference buffer, PLL, and biasing
networks. The decoupling capacitors on VREF are discharged
when entering power-down mode and must be recharged when
returning to normal operation. As a result, the wake-up time is
related to the time spent in the power-down mode: shorter
cycles result in proportionally shorter wake-up times. To restore
the device to full operation, approximately 0.5 ms is required
when using the recommended 1 μF and 0.1 μF decoupling
capacitors on the VREF pin and the 0.01 μF decoupling
capacitors on the GAIN± pins. Most of this time is dependent
on the gain decoupling: higher value decoupling capacitors on
the GAIN± pins result in longer wake-up times.
A number of other power-down options are available when
using the SPI port interface. The user can individually power
down each channel or put the entire device into standby mode.
This allows the user to keep the internal PLL powered up when
fast wake-up times are required. The wake-up time is slightly
dependent on gain. To achieve a 1 μs wake-up time when the
device is in standby mode, 0.8 V must be applied to the GAIN±
pins. See
Table 19 for more details on using these features.
Power and Ground Recommendations
When connecting power to the AD9279, it is recommended that
two separate 1.8 V supplies be used: one for analog (AVDD)
and one for digital (DRVDD). If only one 1.8 V supply is
available, it should be routed to the AVDD1 pin first and then
tapped off and isolated with a ferrite bead or a filter choke
preceded by decoupling capacitors for the DRVDD pin. The
user should employ several decoupling capacitors on all
supplies to cover both high and low frequencies. Locate these
capacitors close to the point of entry at the PCB level and close
to the part, with minimal trace lengths.
A single PCB ground plane should be sufficient when using the
AD9279. With proper decoupling and smart partitioning of the
analog, digital, and clock sections of the PCB, optimum perfor-
mance can be easily achieved.
Digital Outputs and Timing
The AD9279 differential outputs conform to the ANSI-644
LVDS standard on default power-up. This can be changed to
a low power, reduced signal option similar to the IEEE 1596.3
standard via the SPI, using Register 0x14, Bit 6. This LVDS
standard can further reduce the overall power dissipation of the
device by approximately 36 mW.
The LVDS driver current is derived on chip and sets the output
current at each output equal to a nominal 3.5 mA. A 100 Ω
differential termination resistor placed at the LVDS receiver
inputs results in a nominal 350 mV swing at the receiver.
The AD9279 LVDS outputs facilitate interfacing with LVDS
receivers in custom ASICs and FPGAs that have LVDS capability
for superior switching performance in noisy environments.
Single point-to-point network topologies are recommended with
a 100 Ω termination resistor placed as close to the receiver as
possible. No far-end receiver termination and poor differential
trace routing may result in timing errors. It is recommended
that the trace length be no longer than 24 inches and that the
differential output traces be kept close together and at equal
lengths. An example of the FCO (CH2), DCO (CH1), and data
(CH3) stream with proper trace length and position is shown in