參數(shù)資料
型號(hào): AD9279-65EBZ
廠商: Analog Devices Inc
文件頁數(shù): 22/44頁
文件大?。?/td> 0K
描述: BOARD EVALUATION FOR AD9279
標(biāo)準(zhǔn)包裝: 1
ADC 的數(shù)量: 8
位數(shù): 12
采樣率(每秒): 80M
數(shù)據(jù)接口: 串行
工作溫度: -40°C ~ 85°C
已用 IC / 零件: AD9279
已供物品:
AD9279
Rev. 0 | Page 29 of 44
Figure 61 shows the typical reduction of AVDD2 current with
each bias setting. It is also recommended that the LNA offset be
adjusted using Register 0x10 (see Table 19) when the LNA bias
setting is low.
HIGH
MID-HIGH
MID-LOW
LOW
180
190
200
210
220
230
240
250
260
TOTAL AVDD2 CURRENT (mA)
L
NA
BI
AS
S
E
T
ING
09
42
3-
06
3
Figure 61. AVDD2 Current at Different LNA Bias Settings, fSAMPLE = 40 MSPS
By asserting the PDWN pin high, the AD9279 is placed into
power-down mode. In this state, the device typically dissipates
5 mW. During power-down, the LVDS output drivers are placed
into a high impedance state. The AD9279 returns to normal
operating mode when the PDWN pin is pulled low. This pin
is both 1.8 V and 3.3 V tolerant.
By asserting the STBY pin high, the AD9279 is placed into a
standby mode. In this state, the device typically dissipates
175 mW. During standby, the entire part is powered down
except the internal references. The LVDS output drivers are
placed into a high impedance state. This mode is well suited for
applications that require power savings because it allows the
device to be powered down when not in use and then quickly
powered up. The time to power the device back up is also greatly
reduced. The AD9279 returns to normal operating mode when
the STBY pin is pulled low. This pin is both 1.8 V and 3.3 V
tolerant.
In power-down mode, low power dissipation is achieved by
shutting down the reference, reference buffer, PLL, and biasing
networks. The decoupling capacitors on VREF are discharged
when entering power-down mode and must be recharged when
returning to normal operation. As a result, the wake-up time is
related to the time spent in the power-down mode: shorter
cycles result in proportionally shorter wake-up times. To restore
the device to full operation, approximately 0.5 ms is required
when using the recommended 1 μF and 0.1 μF decoupling
capacitors on the VREF pin and the 0.01 μF decoupling
capacitors on the GAIN± pins. Most of this time is dependent
on the gain decoupling: higher value decoupling capacitors on
the GAIN± pins result in longer wake-up times.
A number of other power-down options are available when
using the SPI port interface. The user can individually power
down each channel or put the entire device into standby mode.
This allows the user to keep the internal PLL powered up when
fast wake-up times are required. The wake-up time is slightly
dependent on gain. To achieve a 1 μs wake-up time when the
device is in standby mode, 0.8 V must be applied to the GAIN±
pins. See Table 19 for more details on using these features.
Power and Ground Recommendations
When connecting power to the AD9279, it is recommended that
two separate 1.8 V supplies be used: one for analog (AVDD)
and one for digital (DRVDD). If only one 1.8 V supply is
available, it should be routed to the AVDD1 pin first and then
tapped off and isolated with a ferrite bead or a filter choke
preceded by decoupling capacitors for the DRVDD pin. The
user should employ several decoupling capacitors on all
supplies to cover both high and low frequencies. Locate these
capacitors close to the point of entry at the PCB level and close
to the part, with minimal trace lengths.
A single PCB ground plane should be sufficient when using the
AD9279. With proper decoupling and smart partitioning of the
analog, digital, and clock sections of the PCB, optimum perfor-
mance can be easily achieved.
Digital Outputs and Timing
The AD9279 differential outputs conform to the ANSI-644
LVDS standard on default power-up. This can be changed to
a low power, reduced signal option similar to the IEEE 1596.3
standard via the SPI, using Register 0x14, Bit 6. This LVDS
standard can further reduce the overall power dissipation of the
device by approximately 36 mW.
The LVDS driver current is derived on chip and sets the output
current at each output equal to a nominal 3.5 mA. A 100 Ω
differential termination resistor placed at the LVDS receiver
inputs results in a nominal 350 mV swing at the receiver.
The AD9279 LVDS outputs facilitate interfacing with LVDS
receivers in custom ASICs and FPGAs that have LVDS capability
for superior switching performance in noisy environments.
Single point-to-point network topologies are recommended with
a 100 Ω termination resistor placed as close to the receiver as
possible. No far-end receiver termination and poor differential
trace routing may result in timing errors. It is recommended
that the trace length be no longer than 24 inches and that the
differential output traces be kept close together and at equal
lengths. An example of the FCO (CH2), DCO (CH1), and data
(CH3) stream with proper trace length and position is shown in
相關(guān)PDF資料
PDF描述
AD9222-65EBZ BOARD EVALUATION AD9222 65MSPS
CM453232-102KL INDUCTR CHIP 1000UH 10% 1812 SMD
1210R-681K COIL .68UH IRON SMD
AD9212-65EBZ BOARD EVALUATION FOR AD9212
MAX11040EVKIT+ KIT EVALUATION FOR MAX11040
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD9279-80KITZ 功能描述:KIT EVALUATION FOR AD9279 RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評(píng)估板 - 模數(shù)轉(zhuǎn)換器 (ADC) 系列:- 產(chǎn)品培訓(xùn)模塊:Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1 系列:- ADC 的數(shù)量:1 位數(shù):12 采樣率(每秒):94.4k 數(shù)據(jù)接口:USB 輸入范圍:±VREF/2 在以下條件下的電源(標(biāo)準(zhǔn)):- 工作溫度:-40°C ~ 85°C 已用 IC / 零件:MAX11645 已供物品:板,軟件
AD9279BBCZ 功能描述:IC ADC 12BIT 80MSPS 144CSPBGA RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - ADCs/DAC - 專用型 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:50 系列:- 類型:數(shù)據(jù)采集系統(tǒng)(DAS) 分辨率(位):16 b 采樣率(每秒):21.94k 數(shù)據(jù)接口:MICROWIRE?,QSPI?,串行,SPI? 電壓電源:模擬和數(shù)字 電源電壓:1.8 V ~ 3.6 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:40-WFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:40-TQFN-EP(6x6) 包裝:托盤
AD9279-BBCZ 制造商:AD 制造商全稱:Analog Devices 功能描述:Octal LNA/VGA/AAF/ADC and CW I/Q Demodulator
AD9280 制造商:AD 制造商全稱:Analog Devices 功能描述:Complete 8-Bit, 32 MSPS, 95 mW CMOS A/D Converter
AD9280ARS 功能描述:IC ADC CMOS 8BIT 32MSPS 28-SSOP RoHS:否 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:2,500 系列:- 位數(shù):12 采樣率(每秒):3M 數(shù)據(jù)接口:- 轉(zhuǎn)換器數(shù)目:- 功率耗散(最大):- 電壓電源:- 工作溫度:- 安裝類型:表面貼裝 封裝/外殼:SOT-23-6 供應(yīng)商設(shè)備封裝:SOT-23-6 包裝:帶卷 (TR) 輸入數(shù)目和類型:-