參數(shù)資料
型號: AGLN125V5-QN100I
元件分類: FPGA
英文描述: FPGA, PBCC100
封裝: 8 X 8 MM, 0.85 HEIGHT, 0.50 MM PITCH, QFN-100
文件頁數(shù): 71/114頁
文件大?。?/td> 3991K
代理商: AGLN125V5-QN100I
IGLOO nano Device Overview
1- 2
A d vance v0.4
Flash Advantages
Low Power
Flash-based IGLOO nano devices exhibit power characteristics similar to those of an ASIC, making
them an ideal choice for power-sensitive applications. IGLOO nano devices have only a very limited
power-on current surge and no high-current transition period, both of which occur on many
FPGAs.
IGLOO nano devices also have low dynamic power consumption to further maximize power
savings; power is reduced even further by the use of a 1.2 V core voltage.
Low dynamic power consumption, combined with low static power consumption and Flash*Freeze
technology, gives the IGLOO nano device the lowest total system power offered by any FPGA.
Security
Nonvolatile, flash-based IGLOO nano devices do not require a boot PROM, so there is no vulnerable
external bitstream that can be easily copied. IGLOO nano devices incorporate FlashLock, which
provides a unique combination of reprogrammability and design security without external
overhead, advantages that only an FPGA with nonvolatile flash programming can offer.
IGLOO nano devices utilize a 128-bit flash-based lock and a separate AES key to secure
programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOO
nano devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit
block cipher encryption standard. AES was adopted by the National Institute of Standards and
Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO nano devices have a built-in
AES decryption engine and a flash-based AES key that make them the most comprehensive
programmable logic device security solution available today. IGLOO nano devices with AES-based
security allow for secure, remote field updates over public networks such as the Internet, and
ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP
thieves. The contents of a programmed IGLOO nano device cannot be read back, although secure
design verification is possible.
Security, built into the FPGA fabric, is an inherent component of IGLOO nano devices. The flash cells
are located beneath seven metal layers, and many device design and layout techniques have been
used to make invasive attacks extremely difficult. IGLOO nano devices, with FlashLock and AES
security, are unique in being highly resistant to both invasive and noninvasive attacks. Your
valuable IP is protected and secure, making remote ISP possible. An IGLOO nano device provides
the most impenetrable security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed,
the configuration data is an inherent part of the FPGA structure, and no external configuration
data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based
IGLOO nano FPGAs do not require system configuration components such as EEPROMs or
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB
area, and increases security and system reliability.
Live at Power-Up
Actel flash-based IGLOO nano devices support Level 0 of the LAPU classification standard. This
feature helps in system component initialization, execution of critical tasks before the processor
wakes up, setup and configuration of memory blocks, clock generation, and bus activity
management. The LAPU feature of flash-based IGLOO nano devices greatly simplifies total system
design and reduces total system cost, often eliminating the need for CPLDs and clock generation
PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO nano device's
flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when
system power is restored. This enables the reduction or complete removal of the configuration
PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB
design. Flash-based IGLOO nano devices simplify total system design and reduce cost and design
risk while increasing system reliability and improving system initialization time.
IGLOO nano flash FPGAs enable the user to quickly enter and exit Flash*Freeze mode. This is done
almost instantly (within 1 s) and the device retains configuration and data in registers and RAM.
相關(guān)PDF資料
PDF描述
AGLN125V5-QN100 FPGA, PBCC100
AGLN125V5-QNG100I FPGA, PBCC100
AGLN125V5-QNG100 FPGA, PBCC100
AGLN125V5-ZFCS81 FPGA, PBGA81
AGLN125V5-ZFCSG81 FPGA, PBGA81
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AGLN125V5-QNG100 制造商:Microsemi Corporation 功能描述:FPGA IGLOO NANO FAMILY 125K GATES 130NM (CMOS) TECHNOLOGY 1. - Trays
AGLN125V5-QNG100I 制造商:Microsemi Corporation 功能描述:FPGA IGLOO NANO FAMILY 125K GATES 130NM (CMOS) TECHNOLOGY 1. - Trays
AGLN125V5-VQ100 功能描述:IC FPGA NANO 1KB 125K 100VQFP RoHS:否 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOO nano 標(biāo)準(zhǔn)包裝:152 系列:IGLOO PLUS LAB/CLB數(shù):- 邏輯元件/單元數(shù):792 RAM 位總計:- 輸入/輸出數(shù):120 門數(shù):30000 電源電壓:1.14 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 85°C 封裝/外殼:289-TFBGA,CSBGA 供應(yīng)商設(shè)備封裝:289-CSP(14x14)
AGLN125V5-VQ100I 功能描述:IC FPGA NANO 1KB 125K 100VQFP RoHS:否 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOO nano 標(biāo)準(zhǔn)包裝:152 系列:IGLOO PLUS LAB/CLB數(shù):- 邏輯元件/單元數(shù):792 RAM 位總計:- 輸入/輸出數(shù):120 門數(shù):30000 電源電壓:1.14 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 85°C 封裝/外殼:289-TFBGA,CSBGA 供應(yīng)商設(shè)備封裝:289-CSP(14x14)
AGLN125V5-VQG100 功能描述:IC FPGA 125K 1.5V 100VTQFP RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOO nano 標(biāo)準(zhǔn)包裝:24 系列:ECP2 LAB/CLB數(shù):1500 邏輯元件/單元數(shù):12000 RAM 位總計:226304 輸入/輸出數(shù):131 門數(shù):- 電源電壓:1.14 V ~ 1.26 V 安裝類型:表面貼裝 工作溫度:0°C ~ 85°C 封裝/外殼:208-BFQFP 供應(yīng)商設(shè)備封裝:208-PQFP(28x28)