ProASICPLUS Flash Family FPGAs v5.9 2-13 Lock Signal An active high Lock signal " />
參數(shù)資料
型號(hào): APA600-BG456I
廠商: Microsemi SoC
文件頁數(shù): 95/178頁
文件大?。?/td> 0K
描述: IC FPGA PROASIC+ 600K 456-PBGA
標(biāo)準(zhǔn)包裝: 24
系列: ProASICPLUS
RAM 位總計(jì): 129024
輸入/輸出數(shù): 356
門數(shù): 600000
電源電壓: 2.3 V ~ 2.7 V
安裝類型: 表面貼裝
工作溫度: -40°C ~ 85°C
封裝/外殼: 456-BBGA
供應(yīng)商設(shè)備封裝: 456-PBGA(35x35)
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁當(dāng)前第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁
ProASICPLUS Flash Family FPGAs
v5.9
2-13
Lock Signal
An active high Lock signal (added via the SmartGen PLL
development tool) indicates that the PLL has locked to
the incoming clock signal. The PLL will acquire and
maintain a lock even when there is jitter on the incoming
clock signal. The PLL will maintain lock with an input
jitter up to 5% of the input period, with a maximum of
5 ns. Users can employ the Lock signal as a soft reset of
the logic driven by GLB and/or GLA. Note if FIN is not
within specified frequencies, then both the FOUT and lock
signal are indeterminate.
PLL Configuration Options
The PLL can be configured during design (via flash-
configuration bits set in the programming bitstream) or
dynamically during device operation, thus eliminating
the need to reprogram the device. The dynamic
configuration bits are loaded into a serial-in/parallel-out
shift register provided in the clock conditioning circuit.
The shift register can be accessed either from user logic
within the device or via the JTAG port. Another option is
internal
dynamic
configuration
via
user-designed
hardware. Refer to Actel's ProASICPLUS PLL Dynamic
Reconfiguration Using JTAG application note for more
information.
For information on the clock conditioning circuit, refer
to Actel’s Using ProASICPLUS Clock Conditioning Circuits
application note.
Sample Implementations
Frequency Synthesis
Figure 2-13 on page 2-14 illustrates an example where
the PLL is used to multiply a 33 MHz external clock up to
133 MHz. Figure 2-14 on page 2-14 uses two dividers to
synthesize a 50 MHz output clock from a 40 MHz input
reference clock. The input frequency of 40 MHz is
multiplied by five and divided by four, giving an output
clock (GLB) frequency of 50 MHz. When dividers are
used, a given ratio can be generated in multiple ways,
allowing the user to stay within the operating frequency
ranges of the PLL. For example, in this case the input
divider could have been two and the output divider also
two, giving us a division of the input frequency by four
to go with the feedback loop division (effective
multiplication) by five.
Adjustable Clock Delay
Figure 2-15 on page 2-15 illustrates the delay of the
input clock by employing one of the adjustable delay
lines. This is easily done in ProASICPLUS by bypassing the
PLL core entirely and using the output delay line. Notice
also that the output clock can be effectively advanced
relative to the input clock by using the delay line in the
feedback path. This is shown in Figure 2-16 on page 2-15.
Clock Skew Minimization
Figure 2-17 on page 2-16 indicates how feedback from
the clock network can be used to create minimal skew
between the distributed clock network and the input
clock. The input clock is fed to the reference clock input
of the PLL. The output clock (GLA) feeds a clock network.
The feedback input to the PLL uses a clock input delayed
by a routing network. The PLL then adjusts the phase of
the input clock to match the delayed clock, thus
providing nearly zero effective skew between the two
clocks.
Refer
to
Actel's
Clock
Conditioning
Circuits
application
note
for
more
information.
Table 2-8
Clock Conditioning Circuitry Delay-Line
Settings
Delay Line
Delay Value (ns)
DLYB
00
1
+0.25
2
+0.50
3+4.0
DLYA
00
1
+0.25
2
+0.50
3+4.0
相關(guān)PDF資料
PDF描述
APA600-BGG456I IC FPGA PROASIC+ 600K 456-PBGA
RMA50DRMD-S273 CONN EDGECARD 100POS .125 SQ WW
AX1000-2FG676 IC FPGA AXCELERATOR 1M 676-FBGA
AX1000-2FGG676 IC FPGA AXCELERATOR 1M 676-FBGA
ASM43DSEI-S13 CONN EDGECARD 86POS .156 EXTEND
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
APA600-BG456M 制造商:Microsemi Corporation 功能描述:FPGA ProASICPLUS Family 600K Gates 180MHz 0.22um Technology 2.5V 456-Pin BGA 制造商:Microsemi Corporation 功能描述:FPGA PROASICPLUS 600K GATES 180MHZ 0.22UM 2.5V 456BGA - Trays
APA600-BGB 制造商:ACTEL 制造商全稱:Actel Corporation 功能描述:ProASIC Flash Family FPGAs
APA600-BGES 制造商:ACTEL 制造商全稱:Actel Corporation 功能描述:ProASIC Flash Family FPGAs
APA600-BGG456 功能描述:IC FPGA PROASIC+ 600K 456-PBGA RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場(chǎng)可編程門陣列) 系列:ProASICPLUS 產(chǎn)品培訓(xùn)模塊:Three Reasons to Use FPGA's in Industrial Designs Cyclone IV FPGA Family Overview 特色產(chǎn)品:Cyclone? IV FPGAs 標(biāo)準(zhǔn)包裝:60 系列:CYCLONE® IV GX LAB/CLB數(shù):9360 邏輯元件/單元數(shù):149760 RAM 位總計(jì):6635520 輸入/輸出數(shù):270 門數(shù):- 電源電壓:1.16 V ~ 1.24 V 安裝類型:表面貼裝 工作溫度:0°C ~ 85°C 封裝/外殼:484-BGA 供應(yīng)商設(shè)備封裝:484-FBGA(23x23)
APA600-BGG456I 功能描述:IC FPGA PROASIC+ 600K 456-PBGA RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場(chǎng)可編程門陣列) 系列:ProASICPLUS 產(chǎn)品培訓(xùn)模塊:Three Reasons to Use FPGA's in Industrial Designs Cyclone IV FPGA Family Overview 特色產(chǎn)品:Cyclone? IV FPGAs 標(biāo)準(zhǔn)包裝:60 系列:CYCLONE® IV GX LAB/CLB數(shù):9360 邏輯元件/單元數(shù):149760 RAM 位總計(jì):6635520 輸入/輸出數(shù):270 門數(shù):- 電源電壓:1.16 V ~ 1.24 V 安裝類型:表面貼裝 工作溫度:0°C ~ 85°C 封裝/外殼:484-BGA 供應(yīng)商設(shè)備封裝:484-FBGA(23x23)