PIC16F72X/PIC16LF72X
DS41341E-page 62
2009 Microchip Technology Inc.
6.3
PORTB and TRISB Registers
PORTB is an 8-bit wide, bidirectional port. The
corresponding
data
direction
register
is
TRISB
corresponding PORTB pin an input (i.e., put the
corresponding output driver in a High-Impedance mode).
Clearing a TRISB bit (= 0) will make the corresponding
PORTB pin an output (i.e., enable the output driver and
put the contents of the output latch on the selected pin).
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then written
to the PORT data latch.
pin output drivers, even when they are being used as
analog inputs. The user should ensure the bits in the
TRISB register are maintained set when using them as
analog inputs. I/O pins configured as analog input always
EXAMPLE 6-2:
INITIALIZING PORTB
6.3.1
ANSELB REGISTER
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELB bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELB bits has no affect on digital
output functions. A pin with TRIS clear and ANSELB
set will still operate as a digital output, but the Input
mode will be analog. This can cause unexpected
behavior
when
executing
read-modify-write
instructions on the affected port.
6.3.2
WEAK PULL-UPS
Each of the PORTB pins has an individually configurable
internal weak pull-up. Control bits WPUB<7:0> enable or
pull-up is automatically turned off when the port pin is
configured as an output. All pull-ups are disabled on a
Power-on Reset by the RBPU bit of the OPTION register.
6.3.3
INTERRUPT-ON-CHANGE
All of the PORTB pins are individually configurable as an
interrupt-on-change pin. Control bits IOCB<7:0> enable
or disable the interrupt function for each pin. Refer to
The
interrupt-on-change
feature
is
disabled on a Power-on Reset.
For enabled interrupt-on-change pins, the present value
is compared with the old value latched on the last read
of PORTB to determine which bits have changed or
mismatched the old value. The ‘mismatch’ outputs of
the last read are OR’d together to set the PORTB
Change Interrupt flag bit (RBIF) in the INTCON register.
This interrupt can wake the device from Sleep. The user,
in the Interrupt Service Routine, clears the interrupt by:
a)
Any read or write of PORTB. This will end the
mismatch condition.
b)
Clear the flag bit RBIF.
A mismatch condition will continue to set flag bit RBIF.
Reading or writing PORTB will end the mismatch
condition and allow flag bit RBIF to be cleared. The latch
holding the last read value is not affected by a MCLR nor
Brown-out Reset. After these Resets, the RBIF flag will
continue to be set if a mismatch is present.
Note:
The ANSELB register must be initialized to
configure an analog channel as a digital
input. Pins configured as analog inputs will
read ‘0’.
BANKSEL PORTB
;
CLRF
PORTB
;Init PORTB
BANKSEL ANSELB
CLRF
ANSELB
;Make RB<7:0> digital
BANKSEL TRISB
;
MOVLW
B
’11110000’ ;Set RB<7:4> as inputs
;and RB<3:0> as outputs
MOVWF
TRISB
;
Note:
When a pin change occurs at the same
time as a read operation on PORTB, the
RBIF flag will always be set. If multiple
PORTB pins are configured for the
interrupt-on-change, the user may not be
able to identify which pin changed state.