May 15, 2002
Am29DS32xG
19
A D V A N C E I N F O R M A T I O N
SecSi
TM
(Secured Silicon) Sector
Flash Memory Region
The SecSi (Secured Silicon) Sector feature provides a
256-byte Flash memory region that enables perma-
nent part identification through an Electronic Serial
Number (ESN). The SecSi Sector uses a SecSi Sector
Indicator Bit (DQ7) to indicate whether or not the
SecSi Sector is locked when shipped from the factory.
This bit is permanently set at the factory and cannot
be changed, which prevents cloning of a factory
locked part. This ensures the security of the ESN once
the product is shipped to the field.
AMD offers the device with the SecSi Sector either
factory locked or customer lockable. The fac-
tory-locked version is always protected when shipped
from the factory, and has the SecSi (Secured Silicon)
Sector Indicator Bit permanently set to a “1.” The cus-
tomer-lockable version is shipped with the SecSi Sec-
tor unprotected, allowing customers to utilize the that
sector in any manner they choose. The customer-lock-
able version has the SecSi (Secured Silicon) Sector
Indicator Bit permanently set to a “0.” Thus, the SecSi
Sector Indicator Bit prevents customer-lockable de-
vices from being used to replace devices that are fac-
tory locked.
The system accesses the SecSi Sector through a
command sequence (see “Enter SecSi
TM
Sector/Exit
SecSi Sector Command Sequence”). After the system
has written the Enter SecSi Sector command se-
quence, it may read the SecSi Sector by using the ad-
dresses normally occupied by the boot sectors. This
mode of operation continues until the system issues
the Exit SecSi Sector command sequence, or until
power is removed from the device. On power-up, or
following a hardware reset, the device reverts to send-
ing commands to the boot sectors.
Factory Locked: SecSi Sector Programmed and
Protected At the Factory
In a factory locked device, the SecSi Sector is pro-
tected when the device is shipped from the factory.
The SecSi Sector cannot be modified in any way. The
device is available preprogrammed with one of the fol-
lowing:
■
A random, secure ESN only
■
Customer code through the ExpressFlash service
■
Both a random, secure ESN and customer code
through the ExpressFlash service.
In devices that have an ESN, a Bottom Boot device
will have the 16-byte ESN at addresses
000000h–000007h
in
000000h–00000Fh in byte mode). In the Top Boot de-
vice
the
ESN
will
1FF000h–1FF007Fh in word mode (or addresses
3FE000h–3FE0FFh in byte mode).
word
mode
(or
be
at
addresses
Customers may opt to have their code programmed by
AMD through the AMD ExpressFlash service. AMD
programs the customer’s code, with or without the ran-
dom ESN. The devices are then shipped from AMD’s
factory with the SecSi Sector permanently locked.
Contact an AMD representative for details on using
AMD’s ExpressFlash service.
Customer Lockable: SecSi Sector NOT
Programmed or Protected At the Factory
If the security feature is not required, the SecSi Sector
can be treated as an additional 256-byte Flash mem-
ory space, expanding the size of the available Flash
array.
Additionally, note the difference in the loca-
tion of the ESN compared to previous Am29DL32x
top boot factory locked devices.
The SecSi Sector
is one-time programmable, may not be erased, and
can be locked only once. Note that the accelerated
programming (ACC) and unlock bypass functions are
not available when programming the SecSi Sector.
The SecSi Sector area can be protected using one of
the following procedures:
■
Write the three-cycle Enter SecSi Sector Region
command sequence, and then follow the in-system
sector protect algorithm as shown in Figure 2, ex-
cept that
RESET# may be at either V
IH
or V
ID
. This
allows in-system protection of the SecSi Sector
without raising any device pin to a high voltage.
Note that this method is only applicable to the SecSi
Sector
■
Write the three-cycle Enter SecSi Sector Region
command sequence, and then use the alternate
method of sector protection described in the “Sec-
tor/Sector Block Protection and Unprotection” sec-
tion.
The SecSi Sector is one-time programmable. Once
the SecSi Sector is locked and verified, the system
must write the Exit SecSi Sector Region command se-
quence to return to reading and writing the remainder
of the array.
The SecSi Sector protection must be used with cau-
tion since, once protected, there is no procedure avail-
able for unprotecting the SecSi Sector area and none
of the bits in the SecSi Sector memory space can be
modified in any way.
Hardware Data Protection
The command sequence requirement of unlock cycles
for programming or erasing provides data protection
against inadvertent writes (refer to Table 14 for com-
mand definitions). In addition, the following hardware
data protection measures prevent accidental erasure
or programming, which might otherwise be caused by
spurious system level signals during V
CC
power-up
and power-down transitions, or from system noise.