?2010 Fairchild Semiconductor Corporation
www.fairchildsemi.com
FAN7930C " Rev. 1.0.2
16
R
ZC D
V
A U X
Z C D
Ze r o - C u r r e n t
D e t e c t
5
V c c
N
1
V
RE F
I
M  O T
re s e t
S a w t o o t h G e n e r a t o r
C
M  O T
T H D O p tim iz e r
Figure 40.    Circuit of THD Optimizer
ZC D
t
ON
t
V
F E T n
t
O N
g e t s h o r te r
t
O N
n o t s h o r te r
t
O N
is ty p ic a lly c o n s ta n t o v e r 1 A C lin e fr e q u e n c y ,
b u t t
O N
is c h a n g e d b y Z C D v o lta g e .
Figure 41.    Effect of THD Optimizer
By THD optimizer, turn-on time over one AC line period
is proportionally changed, depending on input voltage.
Near zero cross, lengthened turn-on time improves THD
performance.
10. V
IN
-Absent Detection: To save power loss caused
by input voltage sensing resistors and to optimize THD,
the   FAN7930C   omits   AC   input   voltage   detection.
Therefore, no information about AC input is available
from the internal controller. In many cases, the V
CC
of
PFC controller is supplied by an independent power
source, like standby power. In this scheme, some
mismatch may exist. For example, when the electric
power is suddenly interrupted during two or three AC
line periods; V
CC
is still live during that time, but output
voltage drops because there is no input power source.
Consequently, the control loop tries to compensate for
the   output   voltage   drop   and   V
COMP
  reaches   its
maximum. This lasts until AC input voltage is live again.
When AC input voltage is live again, high V
COMP
allows
high switching current and more stress is put on the
MOSFET and diode. To protect against this, FAN7930C
checks if the input AC voltage exists. If input does not
exist, soft-start is reset and waits until AC input is live
again. Soft-start manages the turn-on time for smooth
operation when it detects AC input is applied again and
applies less voltage and current stress on startup.
V
IN
V
OU   T
V
A   U   X
M  O  S  F  E  T   g  a  t e
I  D   S
f
M I N
D
M   A  X
H  i g h d r a i n
c u r r e n t !
V    C   O   M   P
T h o u g h V
IN
i s
e l i m  i n a t e d , o p e r a t i o n o f
c o n t r o l l e r i s n o r m  a l d u e
t o t h e l a r g e b y p a s s
c a p a c i t o r .
Figure 42.    Without V
IN
-Absent Circuit
V
I N
V
O   U   T
V    A   U   X
O  S  F  E  T   g  a  t e
I
D   S
f
M   I N
D
M   A  X
V
I N
A  b  s e  n  c e   D  e  t e  c t e  d
N  e  w  V
C   O   M   P
T h o u g h V
I N
is
e lim  in a t e d , o p e r a t io n o f
c o n t r o lle r is n o r m  a l d u e
t o t h e la r g e b y p a s s
c a p a c it o r .
f
M   I N
D
M   I N
S  m  o  o  t h  
S  o  f t - S  t a  r t
Figure 43.    With V
IN
-Absent Circuit
11. Current Sense: The MOSFET current is sensed
using an   external sensing   resistor   for over-current
protection. If the CS pin voltage is higher than 0.8 V, the
over-current    protection    comparator    generates    a
protection signal. An internal RC filter of 40 k?and 8 pF
is included to filter switching noise.
12. Gate Driver Output: FAN7930C contains a single
totem-pole output stage designed for a direct drive of
the power MOSFET. The drive output is capable of up
to +500 / -800 mA peak current with a typical rise and
fall time of 50 ns with 1 nF load. The output voltage is
clamped to 13 V to protect the MOSFET gate even if the
V
CC
voltage is higher than 13 V.