12 FN6668.9 June 20, 2012 This will ensure that the device can accept a wide range of backup voltages from many types of sources whil" />
參數(shù)資料
型號(hào): ISL12022MIBZ
廠商: Intersil
文件頁數(shù): 4/31頁
文件大?。?/td> 0K
描述: IC RTC/CALENDAR TEMP SNSR 20SOIC
應(yīng)用說明: Addressing Power Issues in Real Time Clock Appls
產(chǎn)品培訓(xùn)模塊: Solutions for Industrial Control Applications
標(biāo)準(zhǔn)包裝: 760
類型: 時(shí)鐘/日歷
特點(diǎn): 警報(bào)器,夏令時(shí),閏年,SRAM
存儲(chǔ)容量: 128B
時(shí)間格式: HH:MM:SS(12/24 小時(shí))
數(shù)據(jù)格式: YY-MM-DD-dd
接口: I²C,2 線串口
電源電壓: 2.7 V ~ 5.5 V
電壓 - 電源,電池: 1.8 V ~ 5.5 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 20-SOIC(0.295",7.50mm 寬)
供應(yīng)商設(shè)備封裝: 20-SOIC W
包裝: 管件
ISL12022M
12
FN6668.9
June 20, 2012
This will ensure that the device can accept a wide range of
backup voltages from many types of sources while reliably
switching into backup mode.
Note that the ISL12022M is not guaranteed to operate with
VBAT < 1.8V. If the battery voltage is expected to drop lower than
this minimum, correct operation of the device, (especially after a
VDD power-down cycle) is not guaranteed.
The minimum VBAT to insure SRAM is stable is 1.0V. Below that,
the SRAM may be corrupted when VDD power resumes.
Real Time Clock Operation
The Real Time Clock (RTC) uses an integrated 32.768kHz quartz
crystal to maintain an accurate internal representation of
second, minute, hour, day of week, date, month, and year. The
RTC also has leap-year correction. The clock also corrects for
months having fewer than 31 days and has a bit that controls
24-hour or AM/PM format. When the ISL12022M powers up
after the loss of both VDD and VBAT, the clock will not begin
incrementing until at least one byte is written to the clock
register.
Single Event and Interrupt
The alarm mode is enabled via the MSB bit. Choosing single
event or interrupt alarm mode is selected via the IM bit. Note that
when the frequency output function is enabled, the alarm
function is disabled.
The standard alarm allows for alarms of time, date, day of the
week, month, and year. When a time alarm occurs in single
event mode, the IRQ/FOUT pin will be pulled low and the alarm
status bit (ALM) will be set to “1”.
The pulsed interrupt mode allows for repetitive or recurring alarm
functionality. Hence, once the alarm is set, the device will
continue to alarm for each occurring match of the alarm and
present time. Thus, it will alarm as often as every minute (if only
the nth second is set) or as infrequently as once a year (if at least
the nth month is set). During pulsed interrupt mode, the
IRQ/FOUT pin will be pulled low for 250ms and the alarm status
bit (ALM) will be set to “1”.
The ALM bit can be reset by the user or cleared automatically
using the auto reset mode (see ARST bit). The alarm function can
be enabled/disabled during battery backup mode using the
FOBATB bit. For more information on the alarm, please see
Frequency Output Mode
The ISL12022M has the option to provide a clock output signal
using the IRQ/FOUT open drain output pin. The frequency output
mode is set by using the FO bits to select 15 possible output
frequency values from 1/32Hz to 32kHz. The frequency output
can be enabled/disabled during Battery Backup mode using the
FOBATB bit.
General Purpose User SRAM
The ISL12022M provides 128 bytes of user SRAM. The SRAM will
continue to operate in battery backup mode. However, it should
be noted that the I2C bus is disabled in battery backup mode.
I2C Serial Interface
The ISL12022M has an I2C serial bus interface that provides
access to the control and status registers and the user SRAM.
The I2C serial interface is compatible with other industry I2C
serial bus protocols using a bi-directional data signal (SDA) and a
clock signal (SCL).
Oscillator Compensation
The ISL12022M provides both initial timing correction and
temperature correction due to variation of the crystal oscillator.
Analog and digital trimming control is provided for initial
adjustment, and a temperature compensation function is provided
to automatically correct for temperature drift of the crystal. Initial
values for the initial AT and DT settings (ITR0), temperature
coefficient (ALPHA), crystal capacitance (BETA), as well as the
crystal turn-over temperature (XTO), are preset internally and
recalled to RAM registers on power-up. The compensation function
can be enabled/disabled at any time and can be used in battery
mode as well.
Register Descriptions
The battery-backed registers are accessible following a slave
byte of “1101111x” and reads or writes to addresses [00h:2Fh].
The defined addresses and default values are described in
Table 1. The battery backed general purpose SRAM has a
different slave address (1010111x), so it is not possible to
read/write that section of memory while accessing the registers.
REGISTER ACCESS
The contents of the registers can be modified by performing a byte
or a page write operation directly to any register address.
The registers are divided into 8 sections. They are:
1. Real Time Clock (7 bytes): Address 00h to 06h.
2. Control and Status (9 bytes): Address 07h to 0Fh.
3. Alarm (6 bytes): Address 10h to 15h.
4. Time Stamp for Battery Status (5 bytes): Address 16h to 1Ah.
5. Time Stamp for VDD Status (5 bytes): Address 1Bh to 1Fh.
6. Day Light Saving Time (8 bytes): 20h to 27h.
7. TEMP (2 bytes): 28h to 29h.
8. Crystal Net PPM Correction, NPPM (2 bytes): 2Ah, 2Bh
9. Crystal Turnover Temperature, XT0 (1 byte): 2Ch
10. Crystal ALPHA at high temperature, ALPHA_H (1 byte): 2Dh
11. Scratch Pad (2 bytes): Address 2Eh and 2Fh
Write capability is allowable into the RTC registers (00h to 06h) only
when the WRTC bit (bit 6 of address 08h) is set to “1”. A multi-byte
read or write operation should be limited to one section per
operation for best RTC time keeping performance.
A register can be read by performing a random read at any
address at any time. This returns the contents of that register
location. Additional registers are read by performing a sequential
read. For the RTC and Alarm registers, the read instruction
latches all clock registers into a buffer, so an update of the clock
does not change the time being read. At the end of a read, the
master supplies a stop condition to end the operation and free
相關(guān)PDF資料
PDF描述
VI-BNK-MW-B1 CONVERTER MOD DC/DC 40V 100W
CDP68HC68T1MZ96 IC RTC RAM/SPI SERIAL 20-SOIC
ISL23318WFRUZ-T7A IC DGTL POT 1CH 10K 10UTQFN
ISL12020MIRZ-T IC RTC/CALENDAR TEMP SNSR 20-DFN
VI-BNK-MV CONVERTER MOD DC/DC 40V 150W
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ISL12022MIBZ-EVAL 功能描述:電源管理IC開發(fā)工具 ISL12022MIBZ-EVAL DEMO BRD RoHS:否 制造商:Maxim Integrated 產(chǎn)品:Evaluation Kits 類型:Battery Management 工具用于評估:MAX17710GB 輸入電壓: 輸出電壓:1.8 V
ISL12022MIBZR5421 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK W/MFK IMPROVED ESD AIR RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube
ISL12022MIBZ-T 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK & TEMP COMPENSATED CRYSTAL RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube
ISL12022MIBZ-T7A 功能描述:IC RTC/CALENDAR TEMP SNSR 20SOIC RoHS:否 類別:集成電路 (IC) >> 時(shí)鐘/計(jì)時(shí) - 實(shí)時(shí)時(shí)鐘 系列:- 產(chǎn)品培訓(xùn)模塊:Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1 系列:- 類型:時(shí)鐘/日歷 特點(diǎn):警報(bào)器,閏年,SRAM 存儲(chǔ)容量:- 時(shí)間格式:HH:MM:SS(12/24 小時(shí)) 數(shù)據(jù)格式:YY-MM-DD-dd 接口:SPI 電源電壓:2 V ~ 5.5 V 電壓 - 電源,電池:- 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-WDFN 裸露焊盤 供應(yīng)商設(shè)備封裝:8-TDFN EP 包裝:管件
ISL12022MIBZ-TR5421 功能描述:實(shí)時(shí)時(shí)鐘 REAL TIME CLK W/MFK IMPROVED ESD AIR RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 總線接口:I2C 日期格式:DW:DM:M:Y 時(shí)間格式:HH:MM:SS RTC 存儲(chǔ)容量:64 B 電源電壓-最大:5.5 V 電源電壓-最小:1.8 V 最大工作溫度:+ 85 C 最小工作溫度: 安裝風(fēng)格:Through Hole 封裝 / 箱體:PDIP-8 封裝:Tube