參數(shù)資料
型號: LM4801MH/NOPB
廠商: NATIONAL SEMICONDUCTOR CORP
元件分類: 音頻/視頻放大
英文描述: 1.5 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO28
封裝: 4.40 MM, TSSOP-28
文件頁數(shù): 5/20頁
文件大?。?/td> 725K
代理商: LM4801MH/NOPB
Application Information (Continued)
fier. From Equation (3), assuming a 5V power supply and an
8
load, the maximum single channel power dissipation is
0.633W or 1.27W for stereo operation.
P
DMAX =4x(VDD)
2 /(2
π2 R
L) Bridge Mode
(3)
The LM4801’s power dissipation is twice that given by Equa-
tion (2) or Equation (3) when operating in the single-ended
mode or bridge mode, respectively. Twice the maximum
power dissipation point given by Equation (3) must not ex-
ceed the power dissipation given by Equation (4):
P
DMAX’= (TJMAX TA)/
θ
JA
(4)
The LM4801’s T
JMAX = 150C. In the MH package soldered
to a DAP pad that expands to a copper area of 2in
2 on a PCB
, the LM4801’s
θ
JA is 41C/W. At any given ambient tempera-
ture T
J\A, use Equation (4) to find the maximum internal
power dissipation supported by the IC packaging. Rearrang-
ing Equation (4) and substituting P
DMAX for PDMAX’ results in
Equation (5). This equation gives the maximum ambient
temperature that still allows maximum stereo power dissipa-
tion without violating the LM4801’s maximum junction tem-
perature.
T
A =TJMAX 2xPDMAX
θ
JA
(5)
For a typical application with a 5V power supply and an 8
load, the maximum ambient temperature that allows maxi-
mum stereo power dissipation without exceeding the maxi-
mum junction temperature is approximately 98C for the MH
package.
T
JMAX =PDMAX
θ
JA +TA
(6)
Equation (6) gives the maximum junction temperature T
J-
MAX
. If the result violates the LM4801’s 150C, reduce the
maximum junction temperature by reducing the power sup-
ply voltage or increasing the load resistance. Further allow-
ance should be made for increased ambient temperatures.
The above examples assume that a device is a surface
mount part operating around the maximum power dissipation
point. Since internal power dissipation is a function of output
power, higher ambient temperatures are allowed as output
power or duty cycle decreases.
If twice the value given by Equation (3) exceeds the result of
Equation (4), then decrease the supply voltage, increase the
load impedance, or reduce the ambient temperature. If these
measures are insufficient, a heat sink can be added to
reduce
θ
JA. The heat sink can be created using additional
copper area around the package, with connections to the
ground pin(s), supply pin and amplifier output pins. External,
solder attached SMT heatsinks such as the Thermalloy
7106D can also improve power dissipation. When adding a
heat sink, the
θ
JA is the sum of
θ
JC,
θ
CS, and
θ
SA.(
θ
JC is the
junctiontocase thermal impedance,
CS is the casetosink
thermal impedance, and
θ
SAis the sinktoambient thermal
impedance.) Refer to the Typical Performance Characteris-
tics curves for power dissipation information at lower output
power levels.
POWER SUPPLY BYPASSING
As with any power amplifier, proper supply bypassing is
critical for low noise performance and high power supply
rejection. Applications that employ a 5V regulator typically
use a 10F in parallel with a 0.1F filter capacitors to stabi-
lize the regulator’s output, reduce noise on the supply line,
and improve the supply’s transient response. However, their
presence does not eliminate the need for a local 1.0F
tantalum bypass capacitance connected between the
LM4801’s supply pins and ground. Do not substitute a ce-
ramic capacitor for the tantalum. Doing so may cause oscil-
lation in the output signal. Keep the length of leads and
traces that connect capacitors between the LM4801’s power
supply pin and ground as short as possible. Connecting a
1F capacitor, C
B, between the BYPASS pin and ground
improves the internal bias voltage’s stability and improves
the amplifier’s PSRR. The PSRR improvements increase as
the bypass pin capacitor value increases. Too large, how-
ever, increases turn-on time and can compromise amplifier’s
click and pop performance. The selection of bypass capaci-
tor values, especially C
B, depends on desired PSRR require-
ments, click and pop performance (as explained in the sec-
tion, Proper Selection of External Components), system
cost, and size constraints.
MICRO-POWER SHUTDOWN
The voltage applied to the SHUTDOWN pin controls the
LM4801’s shutdown function. Activate micro-power shut-
down by applying V
DD to the SHUTDOWN pin. When active,
the LM4801’s micro-power shutdown feature turns off the
amplifier’s bias circuitry, reducing the supply current. The
logic threshold is typically V
DD/2. The low 0.7A typical
shutdown current is achieved by applying a voltage that is as
near as V
DD as possible to the SHUTDOWN pin. A voltage
thrat is less than V
DD may increase the shutdown current.
There are a few ways to control the micro-power shutdown.
These include using a single-pole, single-throw switch, a
microprocessor, or a microcontroller. When using a switch,
connect an external 10k
pull-up resistor between the
SHUTDOWN pin and V
DD. Connect the switch between the
SHUTDOWN pin and ground. Select normal amplifier opera-
tion by closing the switch. Opening the switch connects the
SHUTDOWN pin to V
DD through the pull-up resistor, activat-
ing micro-power shutdown. The switch and resistor guaran-
tee that the SHUTDOWN pin will not float. This prevents
unwanted state changes. In a system with a microprocessor
or a microcontroller, use a digital output to apply the control
voltage to the SHUTDOWN pin. Driving the SHUTDOWN pin
with active circuitry eliminates the pull up resistor.
TABLE 1. LOGIC LEVEL TRUTH TABLE FOR
SHUTDOWN OPERATION
SHUTDOWN
OPERATIONAL MODE
Low
Full power, stereo BTL
amplifiers
High
Micro-power Shutdown
SELECTING PROPER EXTERNAL COMPONENTS
Optimizing the LM4801’s performance requires properly se-
lecting external components. Though the LM4801 operates
well when using external components with wide tolerances,
best performance is achieved by optimizing component val-
ues.
LM4801
www.national.com
13
相關(guān)PDF資料
PDF描述
LM4808MDC 0.15 W, 2 CHANNEL, AUDIO AMPLIFIER, UUC
LM4808MWC 0.15 W, 2 CHANNEL, AUDIO AMPLIFIER, UUC
LM4808LD/NOPB 0.15 W, 2 CHANNEL, AUDIO AMPLIFIER, DSO8
LM4808LDX/NOPB 0.15 W, 2 CHANNEL, AUDIO AMPLIFIER, DSO8
LM4809MDC 0.105 W, 2 CHANNEL, AUDIO AMPLIFIER, UUC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LM480261 制造商:SHARP 制造商全稱:Sharp Electrionic Components 功能描述:Medium Size Graphic Type LCD Module
LM4802B 制造商:NSC 制造商全稱:National Semiconductor 功能描述:Audio Power Amplifier with Boost Converter to Drive Ceramic Speakers
LM4802BLQ 功能描述:音頻放大器 RoHS:否 制造商:STMicroelectronics 產(chǎn)品:General Purpose Audio Amplifiers 輸出類型:Digital 輸出功率: THD + 噪聲: 工作電源電壓:3.3 V 電源電流: 最大功率耗散: 最大工作溫度: 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TQFP-64 封裝:Reel
LM4802BLQ/NOPB 功能描述:音頻放大器 RoHS:否 制造商:STMicroelectronics 產(chǎn)品:General Purpose Audio Amplifiers 輸出類型:Digital 輸出功率: THD + 噪聲: 工作電源電壓:3.3 V 電源電流: 最大功率耗散: 最大工作溫度: 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TQFP-64 封裝:Reel
LM4802BLQBD 功能描述:音頻 IC 開發(fā)工具 LM4802BLQ EVAL BOARD RoHS:否 制造商:Texas Instruments 產(chǎn)品:Evaluation Kits 類型:Audio Amplifiers 工具用于評估:TAS5614L 工作電源電壓:12 V to 38 V