Keyboard Interrupt Module (KBI)
Keyboard Initialization
MC68HC908JB8MC68HC08JB8MC68HC08JT8 — Rev. 2.3
Technical Data
Freescale Semiconductor
Keyboard Interrupt Module (KBI)
231
Return of all enabled keyboard interrupt pins to logic 1 — As long
as any enabled keyboard interrupt pin is at logic 0, the keyboard
interrupt remains set.
The vector fetch or software clear and the return of all enabled keyboard
interrupt pins to logic 1 may occur in any order.
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-
sensitive only. With MODEK clear, a vector fetch or software clear
immediately clears the keyboard interrupt request.
Reset clears the keyboard interrupt request and the MODEK bit, clearing
the interrupt request even if a keyboard interrupt pin stays at logic 0.
The keyboard flag bit (KEYF) in the keyboard status and control register
can be used to see if a pending interrupt exists. The KEYF bit is not
affected by the keyboard interrupt mask bit (IMASKK) which makes it
useful in applications where polling is preferred.
To determine the logic level on a keyboard interrupt pin, use the data
direction register to configure the pin as an input and read the data
register.
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding
keyboard interrupt pin to be an input, overriding the data direction
register. However, the data direction register bit must be a logic 0 for
software to read the pin.
14.6 Keyboard Initialization
When a keyboard interrupt pin is enabled, it takes time for the pullup
device to reach a logic 1. Therefore, a false interrupt can occur as soon
as the pin is enabled.
To prevent a false interrupt on keyboard initialization:
1.
Mask keyboard interrupts by setting the IMASKK bit in the
keyboard status and control register.
2.
Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register.