參數(shù)資料
型號: PIC16C74A-04I/P
廠商: Microchip Technology
文件頁數(shù): 95/114頁
文件大小: 0K
描述: IC MCU OTP 4KX14 A/D PWM 40DIP
產(chǎn)品培訓(xùn)模塊: Asynchronous Stimulus
8-bit PIC® Microcontroller Portfolio
標(biāo)準(zhǔn)包裝: 10
系列: PIC® 16C
核心處理器: PIC
芯體尺寸: 8-位
速度: 4MHz
連通性: I²C,SPI,UART/USART
外圍設(shè)備: 欠壓檢測/復(fù)位,POR,PWM,WDT
輸入/輸出數(shù): 33
程序存儲器容量: 7KB(4K x 14)
程序存儲器類型: OTP
RAM 容量: 192 x 8
電壓 - 電源 (Vcc/Vdd): 4 V ~ 6 V
數(shù)據(jù)轉(zhuǎn)換器: A/D 8x8b
振蕩器型: 外部
工作溫度: -40°C ~ 85°C
封裝/外殼: 40-DIP(0.600",15.24mm)
包裝: 管件
配用: 444-1001-ND - DEMO BOARD FOR PICMICRO MCU
1997 Microchip Technology Inc.
DS30390E-page 81
PIC16C7X
To enable the serial port, SSP enable bit SSPEN
(SSPCON<5>) must be set. To reset or recongure SPI
mode, clear enable bit SSPEN, re-initialize SSPCON
register, and then set enable bit SSPEN. This cong-
ures the SDI, SDO, SCK, and SS pins as serial port
pins. For the pins to behave as the serial port function,
they must have their data direction bits (in the TRIS reg-
ister) appropriately programmed. That is:
SDI must have TRISC<4> set
SDO must have TRISC<5> cleared
SCK (Master mode) must have TRISC<3>
cleared
SCK (Slave mode) must have TRISC<3> set
SS must have TRISA<5> set (if implemented)
Any serial port function that is not desired may be over-
ridden by programming the corresponding data direc-
tion (TRIS) register to the opposite value. An example
would be in master mode where you are only sending
data (to a display driver), then both SDI and SS could
be used as general purpose outputs by clearing their
corresponding TRIS register bits.
Figure 11-4 shows a typical connection between two
microcontrollers. The master controller (Processor 1)
initiates the data transfer by sending the SCK signal.
Data is shifted out of both shift registers on their pro-
grammed clock edge, and latched on the opposite edge
of the clock. Both processors should be programmed to
the same Clock Polarity (CKP), then both controllers
would send and receive data at the same time.
Whether the data is meaningful (or dummy data)
depends on the application software. This leads to
three scenarios for data transmission:
Master sends data — Slave sends dummy data
Master sends data — Slave sends data
Master sends dummy data — Slave sends data
The master can initiate the data transfer at any time
because it controls the SCK. The master determines
when the slave (Processor 2) is to broadcast data by
the software protocol.
In master mode the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SCK output could be disabled
(programmed as an input). The SSPSR register will
continue to shift in the signal present on the SDI pin at
the programmed clock rate. As each byte is received, it
will be loaded into the SSPBUF register as if a normal
received byte (interrupts and status bits appropriately
set). This could be useful in receiver applications as a
“l(fā)ine activity monitor” mode.
In slave mode, the data is transmitted and received as
the external clock pulses appear on SCK. When the
last bit is latched interrupt ag bit SSPIF (PIR1<3>) is
set.
The clock polarity is selected by appropriately program-
ming bit CKP (SSPCON<4>). This then would give
waveforms for SPI communication as shown in
Figure 11-5 and Figure 11-6 where the MSB is trans-
mitted rst. In master mode, the SPI clock rate (bit rate)
is user programmable to be one of the following:
Fosc/4 (or TCY)
Fosc/16 (or 4
TCY)
Fosc/64 (or 16
TCY)
Timer2 output/2
This allows a maximum bit clock frequency (at 20 MHz)
of 5 MHz. When in slave mode the external clock must
meet the minimum high and low times.
In sleep mode, the slave can transmit and receive data
and wake the device from sleep.
FIGURE 11-4: SPI MASTER/SLAVE CONNECTION
Serial Input Buffer
(SSPBUF register)
Shift Register
(SSPSR)
MSb
LSb
SDO
SDI
PROCESSOR 1
SCK
SPI Master SSPM3:SSPM0 = 00xxb
Serial Input Buffer
(SSPBUF register)
Shift Register
(SSPSR)
LSb
MSb
SDI
SDO
PROCESSOR 2
SCK
SPI Slave SSPM3:SSPM0 = 010xb
Serial Clock
Applicable Devices
72 73 73A 74 74A 76 77
相關(guān)PDF資料
PDF描述
PIC16F874-20I/PT IC MCU FLASH 4KX14 EE 44TQFP
PIC32MX675F512L-80I/PT IC MCU 32BIT 512KB FLASH 100TQFP
PIC32MX695F512H-80I/PT IC MCU 32BIT 512KB FLASH 64TQFP
PIC16LF877-04I/PQ IC PIC MCU FLASH 8KX14 44MQFP
PIC16F877-20I/L IC MCU FLASH 8KX14 EE 44PLCC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
PIC16C74A-10/L 功能描述:8位微控制器 -MCU 7KB 192 RAM 33 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
PIC16C74A-10/L 制造商:Microchip Technology Inc 功能描述:8BIT CMOS MCU SMD 16C74 PLCC44
PIC16C74A-10/P 功能描述:8位微控制器 -MCU 7KB 192 RAM 33 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
PIC16C74A-10/P 制造商:Microchip Technology Inc 功能描述:IC 8BIT CMOS MCU 16C74 DIP40
PIC16C74A-10/PQ 功能描述:8位微控制器 -MCU 7KB 192 RAM 33 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT