TAS5518 Controls and Status
43
SLES115 — August 2004
TAS5518
1. The system scans Bank 1 data rate associations to see if the Bank 1 is assigned for that data rate.
2. If Bank 1 is assigned, then the Bank 1 coefficients will be loaded.
3. If it is not then, the system scans the bank 2 to see if Bank 1 is assigned for that data rate.
4. If Bank 2 is assigned, then the Bank 2 coefficients will be loaded.
5. If it is not then, the system loads the Bank 3 coefficients.
The default is that all frequencies are enabled for Bank 1. This default is expressed as a value of all 1s in the
Bank 1 auto-selection byte and all 0s in the bank 2 autosection byte.
2.5.2.1
Coefficients Write Operations While Automatic Bank Switch Is Enabled
In automatic mode if a write occurs to the Tone, EQ, DRC, or Loudness coefficients, the bank that is written
to is the current bank.
2.5.3 Bank Set
Bank set is used to provide a secure way to update the bank coefficients in both the manual and automatic
switching modes without causing a bank switch to occur. Bank set mode does not alter the current bank
register mapping. It simply enables any bank’s coefficients to be updated while inhibiting any bank switches
from taking place. In manual mode, this enables the coefficients to be set without switching banks. In automatic
mode this prevents a clock error or data rate change from corrupting a bank coefficient write.
To update the coefficients of a bank, a value of 4, 5, or 6 is written into in the bank selection bits of the bank
control register. This enables the Tone, EQ, DRC, and Loudness coefficient values of bank 1, 2, or 3 to be
respectively updated.
Once the coefficients of the bank have been updated, the bank selection bits are then returned to the desired
manual or automatic bank selection mode.
2.5.4 Bank Switch Timeline
After a bank switch is initiated (manual or automatic), no I2C writes to the TAS5518 should occur before a
minimum of 186 ms. This value is determined by the volume ramp rates for a particular sample rate.
2.5.5 Bank Switching Example 1
Problem: The audio unit containing a TAS5518 needs to handle different audio formats with different sample
rates. Format #1 requires Fs = 32 kHz, Format #2 requires Fs = 44.1 kHz, and Format #3 requires Fs = 48
kHz. The sample-rate dependent parameters in the TAS5518 require different coefficients and data
depending on the sample rate.
Strategy: Use the TAS5518 bank switching feature to allow for managing and switching three banks
associated with the three sample rates, 32 kHz (Bank 1), 44.1 kHz (Bank 2), and 48 kHz (Bank 3).
One possible algorithm is to generate, load, and automatically manage bank switching for this problem:
Generate bank-related coefficients (see above) for sample rates 32 kHz, 44.1 kHz, and 48 kHz and include
the same in the micro-based TAS5518 I2C firmware.
On TAS5518 power up or reset, the micro runs the following TAS5518 Initialization code:
Update Bank 1 (Write 0x00048040 to register 0x40).
Write bank-related I2C registers with appropriate values for Bank 1.
Write Bank 2 (Write 0x00058040 to register 0x40).
Load bank-related I2C registers with appropriate values for Bank 2.
Write Bank 3 (Write 0x00068040 to register 0x40).
Load bank-related I2C registers with appropriate values for Bank 3.
Select automatic bank switching (write 0x00038040 to register 0x40)