SLVSA23 – SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com
Sometimes under serious overload conditions such as short-circuit, the overcurrent runaway may still happen
when using cycle-by-cycle current limiting. A second mode of current limiting is used, i.e. hiccup mode
overcurrent limiting. During hiccup mode overcurrent limiting, the voltage reference is grounded and the high-side
MOSFET is turned off for the hiccup time. Once the hiccup time duration is complete, the regulator restarts under
control of the slow start circuit.
Overvoltage Protection
The TPS5410 has an overvoltage protection (OVP) circuit to minimize voltage overshoot when recovering from
output fault conditions. The OVP circuit includes an overvoltage comparator to compare the VSENSE pin voltage
and a threshold of 112.5% x VREF. Once the VSENSE pin voltage is higher than the threshold, the high-side
MOSFET will be forced off. When the VSENSE pin voltage drops lower than the threshold, the high-side
MOSFET will be enabled again.
Thermal Shutdown
The TPS5410 protects itself from overheating with an internal thermal shutdown circuit. If the junction
temperature exceeds the thermal shutdown trip point, the voltage reference is grounded and the high-side
MOSFET is turned off. The part is restarted under control of the slow start circuit automatically when the junction
temperature drops 14°C below the thermal shutdown trip point.
PCB Layout
Connect a low ESR ceramic bypass capacitor to the VIN pin. Care should be taken to minimize the loop area
formed by the bypass capacitor connections, the VIN pin, and the TPS5410 ground pin. The best way to do this
is to extend the top side ground area from under the device adjacent to the VIN trace, and place the bypass
capacitor as close as possible to the VIN pin. The minimum recommended bypass capacitance is 4.7
μF ceramic
with a X5R or X7R dielectric.
There should be a ground area on the top layer directly underneath the IC to connect the GND pin of the device
and the anode of the catch diode. The GND pin should be tied to the PCB ground by connecting it to the ground
area under the device as shown in
Figure 9.
The PH pin should be routed to the output inductor, catch diode and boot capacitor. Since the PH connection is
the switching node, the inductor should be located close to the PH pin, and the area of the PCB conductor
minimized to prevent excessive capacitive coupling. The catch diode should also be placed close to the device to
minimize the output current loop area. Connect the boot capacitor between the phase node and the BOOT pin as
shown. Keep the boot capacitor close to the IC and minimize the conductor trace lengths. The component
placements and connections shown work well, but other connection routings may also be effective.
Connect the output filter capacitor(s) as shown between the VOUT trace and GND. It is important to keep the
loop formed by the PH pin, Lout, Cout and GND as small as is practical.
Connect the VOUT trace to the VSENSE pin using the resistor divider network to set the output voltage. Do not
route this trace too close to the PH trace. Due to the size of the IC package and the device pinout, the trace may
need to be routed under the output capacitor. The routing may be done on an alternate layer if a trace under the
output capacitor is not desired.
If the grounding scheme shown is used via a connection to a different layer to route to the ENA pin.
8
Copyright 2009, Texas Instruments Incorporated