XR16M2751
11
REV. 1.0.0
1.62V TO 3.63V HIGH PERFORMANCE DUART WITH 64-BYTE FIFO
2.8
Crystal Oscillator or External Clock Input
The M2751 includes an on-chip oscillator (XTAL1 and XTAL2) to produce a clock for both UART sections in the
device. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a
system clock to the Baud Rate Generators (BRG) section found in each of the UART. XTAL1 is the input to the
oscillator or external clock buffer input with XTAL2 pin being the output. For programming details, see
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100 ppm frequency
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 4). The programmable Baud
Rate Generator is capable of operating with a crystal oscillator frequency of up to 24 MHz. However, with an
external clock input on XTAL1 pin, it can extend its operation up to 64 MHz (8 Mbps serial data rate) at 3.3V
with an 8X sampling rate. For further reading on the oscillator circuit please see the Application Note DAN108
2.9
Programmable Baud Rate Generator with Fractional Divisor
Each UART has its own Baud Rate Generator (BRG) with a prescaler for the transmitter and receiver. The
prescaler is controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescaler to divide
the input crystal or external clock by 1 or 4. The output of the prescaler clocks to the BRG. The BRG further
divides this clock by a programmable divisor between 1 and (216 - 0.0625) in increments of 0.0625 (1/16) to
obtain a 16X or 8X sampling clock of the serial data rate. The sampling clock is used by the transmitter for data
bit shifting and receiver for data sampling. The BRG divisor (DLL, DLM and DLD registers) defaults to the value
of ’1’ (DLL = 0x01, DLM = 0x00 and DLD = 0x00) upon reset. Therefore, the BRG must be programmed during
initialization to the operating data rate. The DLL and DLM registers provide the integer part of the divisor and
the DLD register provides the fractional part of the dvisior. Only the four lower bits of the DLD are implemented
and they are used to select a value from 0 (for setting 0000) to 0.9375 or 15/16 (for setting 1111). Programming
the Baud Rate Generator Registers DLL, DLM and DLD provides the capability for selecting the operating data
rate. Table 6 shows the standard data rates available with a 24MHz crystal or external clock at 16X clock rate.
If the pre-scaler is used (MCR bit-7 = 1), the output data rate will be 4 times less than that shown in Table 6. At
8X sampling rate, these data rates would double. Also, when using 8X sampling mode, please note that the bit-
FIGURE 4. TYPICAL OSCILLATOR CONNECTIONS
C1
22-47 pF
C2
22-47 pF
Y1
1.8432 MHz
to
24 MHz
R1
0-120
(Optional)
R2
500Κ1Μ
XTAL1
XTAL2