Photoelectric Smoke Detector
with Interconnect, Timer, and Latching Alarm Indicator
A5303
7
Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com
HORN Pin
The HORN pin is a logic output provided to enable an optional,
external boost converter that can drive a piezoelectric (piezo)
horn. Using a boost converter to drive a piezo horn allows alarms
to generate high SPL levels from low supply voltages. HORN will
be driven high to enable the boost converter. The output of the
boost converter will be connected to the piezo horn such that the
horn will sound when the converter is enabled. If a boost con-
verter and horn are not used, this pin should be left open.
BLINK Pin
This logic input determines the LED operation while the device is
in standby. If BLINK is connected to VDD the device will blink
once every approximately 43 s in standby. If BLINK is connected
to VSS the device will not blink in standby. If a low-battery or
degraded-chamber condition exists while the device is in standby,
the LED will blink as described in the Alarm Indications section,
regardless of the state of the BLINK pin. The BLINK pin has no
effect when the device is in local, remote, or test alarm.
LED Pin
This open-drain NMOS output is used to directly drive a visible
LED. The LED indicates detector status as follows (with compo-
nent values as in the typical application, all times nominal):
Condition
Pulse Occurrence
Standby, BLINK = VDD
Every 43.0 s
Standby, BLINK = VSS
No LED pulses
Local Smoke
Every 0.5 s
Remote Alarm
No pulses
Test Mode
Every 0.5 s
Timer (Hush) Mode
Every 10.8 s
OSC CAP (Oscillator Capacitor) Pin
A capacitor between this pin and VDD, along with a parallel
resistor, forms part of a two-terminal oscillator and sets the inter-
nal clock low time. With component values shown, this nominal
time is 10.4 ms and essentially the oscillator period, which is also
the STROBE pulse width. The internal clock low time can be
calculated by:
Tlow = 0.693 × ROSCCAP × COSCCAP
(2)
TRES (Timing Resistor) Pin
A resistor between this pin and OSC CAP is part of the two-termi-
nal oscillator and sets the internal clock high time, which is also
the IRED pulse width. With component values shown, this time is
nominally 105 μs. The internal clock high time can be calculated
by:
Thigh = 0.693 × RTRES × COSCCAP
(3)
VSS Pin
This pin is connected to the negative supply potential (usually
ground).
HUSH Pin
This input pin serves two purposes in standby mode. It serves to
enable/disable entering the internal 10-minute (nominal) “hush”
timer mode, and also as the reference for the smoke comparator
during timer mode. Timer mode allows the user to temporarily
hush alarms caused by nuisance smoke or steam (such as from
cooking).
When the voltage on this pin is greater than approximately
50 mV, entering timer mode is enabled, and a high-to-low transi-
tion on the TEST pin resets and starts timer mode. If use of timer
mode is not desired this pin must be connected to VSS, and timer
mode is disabled.
During timer mode the smoke comparator reference is established
externally by a resistive divider (R1 and R2) between VDD and
STROBE. Also, during timer mode the photoamplifier gain, Ae,
is internally reduced to about 55% that during the normal-gain
mode. Thus, Ae = 1 + (C2 / 22), where C2 is in pF. These two
conditions allow the detector to operate with reduced sensitivity
during timer mode. If the level of smoke increases such that the
temporary alarm threshold is reached, a local alarm will sound. If
the HUSH pin is connected directly to STROBE without using a
resistor divider, then a local alarm will never occur during timer
mode, regardless of the smoke level. When not in timer mode,
the smoke comparator reference is set internally to approximately
VDD – 1.6 V.
The resistor dividers formed by the adjustable photoamp-divider
and the HUSH divider (R1 + R2, if timer mode is used) should
be chosen so that the load on STROBE does not exceed 500 μA.
Thus, the photoamp-divider (8 kΩ in the typical application) in
parallel with the HUSH divider (R1 + R2) shall be no
less than 4 kΩ.
TEST Pin
This pin has an internal pulldown device and is used to manually
invoke push-to-test mode and timer mode. Push-to-test mode is
initiated by a voltage greater than approximately VDD – 0.5 V
on this pin (usually the closure of a normally open push-button
switch to VDD). After one oscillator cycle, the amplifier gain is