參數(shù)資料
型號: CS51312
廠商: ZF Electronics Corporation
英文描述: Synchronous CPU Buck Controller for 12V Only Applications
中文描述: 同步降壓控制器的CPU,只有應(yīng)用的12V
文件頁數(shù): 12/18頁
文件大?。?/td> 276K
代理商: CS51312
C
12
Application Information: continued
where
I
L
= inductor ripple current;
V
OUT
= output voltage;
T
OFF
= switch Off-Time;
L = inductor value.
The designer can now verify if the number of output
capacitors from step 2 will provide an acceptable output
voltage ripple (1% of output voltage is common). The for-
mula below is used:
I
L
=
,
Rearranging we have:
ESR
MAX
=
,
where
ESR
MAX
= maximum allowable ESR;
V
OUT
= 1%
×
V
OUT
= maximum allowable output volt-
age ripple ( budgeted by the designer );
I
L
= inductor ripple current;
V
OUT
= output voltage.
The number of output capacitors is determined by:
Number of capacitors =
,
where ESR
CAP
= maximum ESR per capacitor (specified in
manufacturer’s data sheet).
The designer must also verify that the inductor value
yields reasonable inductor peak and valley currents (the
inductor current is a triangular waveform):
I
L(PEAK)
= I
OUT
+
,
where
I
L(PEAK)
= inductor peak current;
I
OUT
= load current;
I
L
= inductor ripple current.
I
L(VALLEY)
= I
OUT
,
where I
L(VALLEY)
= inductor valley current.
Step 5: Selection of the Input Capacitors
These components must be selected and placed carefully to
yield optimal results. Capacitors should be chosen to pro-
vide acceptable ripple on the input supply lines. A key
specification for input capacitors is their ripple current rat-
ing. The input capacitor should also be able to handle the
input RMS current I
IN(RMS)
.
The combination of the input capacitors C
IN
discharges
during the on-time.
The input capacitor discharge current is given by:
I
CINDIS(RMS)
=
,
where
I
CINDIS(RMS)
= input capacitor discharge current;
I
L(PEAK)
= inductor peak current;
I
L(VALLEY)
= inductor valley current.
C
IN
charges during the off-time, the average current
through the capacitor over one switching cycle is zero:
I
CIN(CH)
= I
CIN(DIS)
×
,
where
I
CIN(CH)
= input capacitor charge current;
I
CIN(DIS)
= input capacitor discharge current;
D = Duty Cycle.
The total Input RMS current is:
I
CIN(RMS)
= (I
CIN(DIS)2
×
D) + (I
CIN(CH)2
×
(1
D))
The number of input capacitors required is then deter-
mined by:
N
CIN
=
,
where
N
CIN
= number of input capacitors;
I
CIN(RMS)
= total input RMS current;
I
RIPPLE
= input capacitor ripple current rating (specified
in manufacturer’s data sheets).
The total input capacitor ESR needs to be determined in
order to calculate the power dissipation of the input capac-
itors:
ESR
CIN
=
,
where
ESR
CIN
= total input capacitor ESR;
ESR
CAP
= maximum ESR per capacitor (specified in
manufacturer’s data sheets);
N
CIN
= number of input capacitors.
Once the total ESR of the input capacitors is known, the
input capacitor ripple voltage can be determined using the
formula:
V
CIN(RMS)
= I
CIN(RMS)
×
ESR
CIN
,
where
V
CIN(RMS)
= input capacitor RMS voltage;
I
CIN(RMS)
= total input RMS current;
ESR
CIN
= total input capacitor ESR.
The designer must determine the input capacitor power
loss in order to ensure there isn’t excessive power dissipa-
tion through these components. The following formula is
used:
P
CIN(RMS)
= I
CIN(RMS)2
×
ESR
CIN
ESR
CAP
N
CIN
I
CIN(RMS)
I
RIPPLE
D
1
D
(I
L(PEAK)2
+ (I
L(PEAK)
×
I
L(VALLEY)
) + I
L(VALLEY)2
×
D
3
I
L
2
I
L
2
ESR
CAP
ESR
MAX
V
OUT
I
L
V
OUT
ESR
MAX
相關(guān)PDF資料
PDF描述
CS51312GD16 Synchronous CPU Buck Controller for 12V Only Applications
CS51313GD16 Micropower 5V, 100mA Low Dropout Linear Regulator
CS51313GDR16 Micropower 5V, 100mA Low Dropout Linear Regulator
CS51313 Micropower 5V, 100mA Low Dropout Linear Regulator
CS5132GDW24 Dual Output CPU Buck Controller
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CS-51313D16 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Current-Mode SMPS Controller
CS-51313DR16 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Current-Mode SMPS Controller
CS51313GDR16 制造商:Rochester Electronics LLC 功能描述: 制造商:ON Semiconductor 功能描述:
CS-5132 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Dual Output CPU Buck Controller
CS5132DW24 制造商:ON Semiconductor 功能描述: