Slave LIN Interface Controller (SLIC) Module
MC68HC908QL4 MC68HC908QL3 MC68HC908QL2 Data Sheet, Rev. 4
170
Freescale Semiconductor
NOTE
Even though most internal oscillators are within ±25% before trimming, they
are stable at some frequency in that range, within at least ±5% over the
entire operating voltage and temperature range. The trimming operation
simply eliminates the offset due to factory manufacturing variations to
re-center the base oscillator frequency to the nominal value. Please refer to
the electrical specifications for the oscillator for more specific information,
as exact specifications might differ from module to module.
14.9.17 Digital Receive Filter
The receiver section of the SLIC module includes a digital low-pass filter to remove narrow noise pulses
from the incoming message. block diagram of the digital filter is shown in
Figure 14-23
.
Figure 14-23. SLIC Module Rx Digital Filter Block Diagram
14.9.17.1 Digital Filter Operation
The clock for the digital filter is provided by the SLIC Interface clock. At each positive edge of the clock
signal, the current state of the receiver input signal from the SLCRX pad is sampled. The SLCRX signal
state is used to determine whether the counter should increment or decrement at the next positive edge
of the clock signal.
The counter will increment if the input data sample is high but decrement if the input sample is low. The
counter will thus progress up towards the highest count value (determined by RXFP bit settings), on
average, the SLCRX signal remains high or progress down towards ‘0’ if, on average, the SLCRX signal
remains low. The final counter value which determines when the filter will change state is generated by
shifting the RXFP value right two positions and bitwise OR-ing the result with the value 0x0F. For
example, a prescale setting of divide by 3 (RXFP = 0x80) would give a count value of 0x2F.
When the counter eventually reaches this value, the digital filter decides that the condition of the SLCRX
signal is at a stable logic level 1 and the data latch is set, causing the filtered Rx data signal to become a
logic level 1. Furthermore, the counter is prevented from overflowing and can only be decremented from
this state.
Alternatively, when the counter eventually reaches the value ‘0’, the digital filter decides that the condition
of the SLCRX signal is at a stable logic level 0 and the data latch is reset, causing the filtered Rx data
D
Q
UP/DOWN
OUT
4
EDGE &
COUNT
COMPARATOR
D
Q
FILTERED
RX DATA OUT
SLIC CLOCK
RX DATA
FROM
SLCRX PIN
INPUT
SYNC
4-BIT UP/DOWN COUNTER
DIGITAL RX FILTER
PRESCALER (RXFP[1:0])
HOLD