PIC18F2220/2320/4220/4320
DS39599G-page 164
2007 Microchip Technology Inc.
17.4
I2C Mode
The MSSP module in I2C mode fully implements all
master and slave functions (including general call sup-
port) and provides interrupts on Start and Stop bits in
hardware to determine a free bus (multi-master func-
tion). The MSSP module implements the standard
mode specifications, as well as 7-bit and 10-bit
addressing.
Two pins are used for data transfer:
Serial Clock (SCL) – RC3/SCK/SCL
Serial Data (SDA) – RC4/SDI/SDA
The user must configure these pins as inputs using the
TRISC<4:3> bits.
FIGURE 17-7:
MSSP BLOCK DIAGRAM
(I2C MODE)
17.4.1
REGISTERS
The MSSP module has six registers for I2C operation.
These are:
MSSP Control Register 1 (SSPCON1)
MSSP Control Register 2 (SSPCON2)
MSSP Status Register (SSPSTAT)
Serial Receive/Transmit Buffer (SSPBUF)
MSSP Shift Register (SSPSR) – Not directly
accessible
MSSP Address Register (SSPADD)
SSPCON1, SSPCON2 and SSPSTAT are the control
and status registers in I2C mode operation. The
SSPCON1 and SSPCON2 registers are readable and
writable. The lower six bits of the SSPSTAT are
read-only. The upper two bits of the SSPSTAT are
read/write.
SSPSR is the shift register used for shifting data in or
out. SSPBUF is the buffer register to which data bytes
are written to or read from.
SSPADD register holds the slave device address
when the MSSP is configured in I2C Slave mode.
When the MSSP is configured in Master mode, the
lower seven bits of SSPADD act as the Baud Rate
Generator reload value.
In receive operations, SSPSR and SSPBUF together
create a double-buffered receiver. When SSPSR
receives a complete byte, it is transferred to SSPBUF
and the SSPIF interrupt is set.
During transmission, the SSPBUF is not double-
buffered. A write to SSPBUF will write to both SSPBUF
and SSPSR.
Read
Write
SSPSR reg
Match Detect
SSPADD reg
Start and
Stop bit Detect
SSPBUF reg
Internal
Data Bus
Addr Match
Set, Reset
S, P bits
(SSPSTAT reg)
RC3/SCK/
Shift
Clock
MSb
LSb
RC4/SDI/
SDA
SCL