參數(shù)資料
型號(hào): ST72621J2B1
廠商: STMICROELECTRONICS
元件分類: 微控制器/微處理器
英文描述: 8-BIT, MROM, 8 MHz, MICROCONTROLLER, PDIP20
封裝: 0.300 INCH, PLASTIC, DIP-20
文件頁(yè)數(shù): 107/136頁(yè)
文件大?。?/td> 2475K
代理商: ST72621J2B1
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)當(dāng)前第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)
ST7262
72/136
SERIAL COMMUNICATIONS INTERFACE (Cont’d)
Framing Error
A framing error is detected when:
– The stop bit is not recognized on reception at the
expected time, following either a de-synchroni-
zation or excessive noise.
– A break is received.
When the framing error is detected:
– the FE bit is set by hardware
– Data is transferred from the Shift register to the
SCIDR register.
– No interrupt is generated. However this bit rises
at the same time as the RDRF bit which itself
generates an interrupt.
The FE bit is reset by a SCISR register read oper-
ation followed by a SCIDR register read operation.
10.5.4.4 Conventional Baud Rate Generation
The baud rate for the receiver and transmitter (Rx
and Tx) are set independently and calculated as
follows:
with:
PR = 1, 3, 4 or 13 (see SCP[1:0] bits)
TR = 1, 2, 4, 8, 16, 32, 64,128
(see SCT[2:0] bits)
RR = 1, 2, 4, 8, 16, 32, 64,128
(see SCR[2:0] bits)
All these bits are in the SCIBRR register.
Example: If fCPU is 8 MHz (normal mode) and if
PR=13 and TR=RR=1, the transmit and receive
baud rates are 38400 baud.
Note: the baud rate registers MUST NOT be
changed while the transmitter or the receiver is en-
abled.
10.5.4.5 Extended Baud Rate Generation
The extended prescaler option gives a very fine
tuning on the baud rate, using a 255 value prescal-
er, whereas the conventional Baud Rate Genera-
tor retains industry standard software compatibili-
ty.
The extended baud rate generator block diagram
is described in the Figure 48.
The output clock rate sent to the transmitter or to
the receiver will be the output from the 16 divider
divided by a factor ranging from 1 to 255 set in the
SCIERPR or the SCIETPR register.
Note: the extended prescaler is activated by set-
ting the SCIETPR or SCIERPR register to a value
other than zero. The baud rates are calculated as
follows:
with:
ETPR = 1,..,255 (see SCIETPR register)
ERPR = 1,.. 255 (see SCIERPR register)
10.5.4.6 Receiver Muting and Wake-up Feature
In multiprocessor configurations it is often desira-
ble that only the intended message recipient
should actively receive the full message contents,
thus reducing redundant SCI service overhead for
all non addressed receivers.
The non addressed devices may be placed in
sleep mode by means of the muting function.
Setting the RWU bit by software puts the SCI in
sleep mode:
All the reception status bits can not be set.
All the receive interrupts are inhibited.
A muted receiver may be awakened by one of the
following two ways:
– by Idle Line detection if the WAKE bit is reset,
– by Address Mark detection if the WAKE bit is set.
Receiver wakes-up by Idle Line detection when
the Receive line has recognised an Idle Frame.
Then the RWU bit is reset by hardware but the
IDLE bit is not set.
Receiver wakes-up by Address Mark detection
when it received a “1” as the most significant bit of
a word, thus indicating that the message is an ad-
dress. The reception of this particular word wakes
up the receiver, resets the RWU bit and sets the
RDRF bit, which allows the receiver to receive this
word normally and to use it as an address word.
Caution: In Mute mode, do not write to the
SCICR2 register. If the SCI is in Mute mode during
the read operation (RWU=1) and a address mark
wake up event occurs (RWU is reset) before the
write operation, the RWU bit will be set again by
this write operation. Consequently the address
byte is lost and the SCI is not woken up from Mute
mode.
Tx =
(16*PR)*TR
fCPU
Rx =
(16*PR)*RR
fCPU
Tx =
16*ETPR*(PR*TR)
fCPU
Rx =
16*ERPR*(PR*RR)
fCPU
相關(guān)PDF資料
PDF描述
ST72621J2T1 8-BIT, MROM, 8 MHz, MICROCONTROLLER, PDSO20
ST72P621L4M1 8-BIT, MROM, 8 MHz, MICROCONTROLLER, PDSO34
ST72623F2M1L 8-BIT, MROM, 4 MHz, MICROCONTROLLER, PDSO34
ST7263BK1B/XXX 8-BIT, MROM, 8 MHz, MICROCONTROLLER, PDIP32
ST72652AR4T1/XXX 8-BIT, MROM, MICROCONTROLLER, PQFP64
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ST7263-EMU2 功能描述:仿真器/模擬器 ST7 Emulator Board RoHS:否 制造商:Blackhawk 產(chǎn)品:System Trace Emulators 工具用于評(píng)估:C6000, C5000, C2000, OMAP, DAVINCI, SITARA, TMS470, TMS570, ARM 7/9, ARM Cortex A8/R4/M3 用于:XDS560v2
ST7265X-EVAL/MS 制造商:STMicroelectronics 功能描述:ST6 EVAL BD - Bulk
ST7265X-EVAL/PFD 制造商:STMicroelectronics 功能描述:USB FLASH EVAL - Bulk
ST7266 制造商:6940 功能描述:ST7266
ST7267C8T1L 制造商:STMicroelectronics 功能描述: