參數(shù)資料
型號: M7A3P400-FGG484
元件分類: FPGA
英文描述: FPGA, 400000 GATES, 350 MHz, PBGA484
封裝: 1 MM PITCH, GREEN, FBGA-484
文件頁數(shù): 135/246頁
文件大小: 3010K
代理商: M7A3P400-FGG484
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁當前第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁
ProASIC3/E Flash Family FPGAs
2- 10
v2.1
Clock Resources (VersaNets)
ProASIC3 devices offer powerful and flexible control of
circuit timing through the use of analog circuitry. Each
chip has up to six CCCs. The west CCC also contains a
phase-locked loop (PLL) core, delay lines, a phase shifter
(0°, 90°, 180°, 270°), and clock multipliers/dividers. Each
CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global
network. The east and west CCCs each have access to
three VersaNet global lines on each side of the chip (six
total lines). The CCCs at the four corners each have access
to three quadrant global lines in each quadrant of the
chip (except A3P030).
Advantages of the VersaNet Approach
One of the architectural benefits of ProASIC3 is the set of
powerful
and
low-delay
VersaNet
global
networks.
ProASIC3 offers six chip (main) global networks that are
distributed from the center of the FPGA array (Figure 2-9).
In addition, ProASIC3 devices have three regional globals in
each of the four chip quadrants. Each core VersaTile has
access to nine global network resources: three quadrant
and six chip (main) global networks, and a total of 18
globals on the device. Each of these networks contains
spines and ribs that reach all the VersaTiles in the quadrants
(Figure 2-10 on page 2-12). This flexible VersaNet global
network architecture allows users to map up to 144
different internal/external clocks in a ProASIC3 device.
Details on the VersaNet networks are given in Table 2-2 on
page 2-12. The flexible use of the ProASIC3 VersaNet global
network allows the designer to address several design
requirements. User applications that are clock-resource-
intensive can easily route external or gated internal clocks
using VersaNet global routing networks. Designers can also
drastically reduce delay penalties and minimize resource
usage by mapping critical, high-fanout nets to the VersaNet
global network.
In A3P030 devices, all six VersaNets are driven from three
southern I/Os, located toward the east and west sides.
These tiles can be configured to select a central I/O on
the respective side or an internal routed signal as the
input signal. The A3P030 does not support any clock
conditioning circuitry, nor does it contain the VersaNet
global network concept of top and bottom spines.
VersaNet Global Networks and Spine Access
The ProASIC3 architecture contains a total of 18
segmented
global
networks
that
can
access
the
VersaTiles, SRAM, and I/O tiles of the ProASIC3 device.
There are nine global network resources in each device
quadrant: three quadrant globals and six chip (main)
global networks. Each device has a total of 18 globals.
These VersaNet global networks offer fast, low-skew
routing resources for high-fanout nets, including clock
signals. In addition, these highly segmented global
networks offer users the flexibility to create low-skew
local
networks
using
spines
for
up
to
144internal/external clocks (in an A3P1000 device) or
other high-fanout nets in ProASIC3 devices. Optimal
usage of these low-skew networks can result in
significant improvement in design performance on
ProASIC3 devices.
The nine spines available in a vertical column reside in
global networks with two separate regions of scope: the
quadrant global network, which has three spines, and
the chip (main) global network, which has six spines.
Note that there are three quadrant spines in each
quadrant of the device (except for A3P030). There are
four quadrant global network regions per device
The spines are the vertical branches of the global
network tree, shown in Figure 2-11 on page 2-13. Each
spine in a vertical column of a chip (main) global
network is further divided into two equal-length spine
segments: one in the top and one in the bottom half of
the die.
Each spine and its associated ribs cover a certain area of
the ProASIC3 device (the "scope" of the spine; see
Figure 2-9 on page 2-11). Each spine is accessed by the
dedicated global network MUX tree architecture, which
defines how a particular spine is driven—either by the
signal on the global network from a CCC, for example, or
by another net defined by the user (Figure 2-12 on page
2-14). Quadrant spines can be driven from user I/Os on
the north and south sides of the die. The ability to drive
spines in the quadrant global networks can have a
significant effect on system performance for high-fanout
inputs to a design.
Details of the chip (main) global network spine-selection
MUX are presented in Figure 2-12 on page 2-14. The
spine drivers for each spine are located in the middle of
the die.
Quadrant spines are driven from a north or south rib.
Access to the top and bottom ribs is from the corner CCC
or from the I/Os on the north and south sides of the
device.
For details on using spines in ProASIC3 devices, see the
Actel application note Using Global Resources in Actel
相關PDF資料
PDF描述
M7A3P400-FPQ208 FPGA, 400000 GATES, 350 MHz, PQFP208
M7A3P400-FPQG208 FPGA, 400000 GATES, 350 MHz, PQFP208
M7A3P400-PQ208I FPGA, 400000 GATES, 350 MHz, PQFP208
M7A3P400-PQ208 FPGA, 400000 GATES, 350 MHz, PQFP208
M7A3P400-PQG208I FPGA, 400000 GATES, 350 MHz, PQFP208
相關代理商/技術參數(shù)
參數(shù)描述
M7A5 制造商:未知廠家 制造商全稱:未知廠家 功能描述:MEDIUM CURRENT SILICON RECTIFIERS
M7A9 制造商:未知廠家 制造商全稱:未知廠家 功能描述:MEDIUM CURRENT SILICON RECTIFIERS
M7AFS600-1FG256 制造商:Microsemi Corporation 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays 制造商:Microsemi SOC Products Group 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays
M7AFS600-1FG256ES 制造商:ACTEL 制造商全稱:Actel Corporation 功能描述:Actel Fusion Mixed-Signal FPGAs
M7AFS600-1FG256I 制造商:Microsemi Corporation 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays 制造商:Microsemi SOC Products Group 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays