參數(shù)資料
型號(hào): MAX19710ETN+T
廠商: Maxim Integrated Products
文件頁(yè)數(shù): 19/37頁(yè)
文件大?。?/td> 0K
描述: IC ANLG FRNT END 56-TQFN
產(chǎn)品變化通告: Product Discontinuation 09/Jun/2011
標(biāo)準(zhǔn)包裝: 2,500
位數(shù): 10
通道數(shù): 2
功率(瓦特): 30mW
電壓 - 電源,模擬: 3V
電壓 - 電源,數(shù)字: 3V
封裝/外殼: 56-WFQFN 裸露焊盤
供應(yīng)商設(shè)備封裝: 56-TQFN-EP(7x7)
包裝: 帶卷 (TR)
26
______________________________________________________________________________________
MAX19710
10-Bit, 7.5Msps, Full-Duplex
Analog Front-End
26
______________________________________________________________________________________
System Clock Input (CLK)
Both the Rx ADC and Tx DAC share the CLK input. The
CLK input accepts a CMOS-compatible signal level set
by OVDD from 1.8V to VDD. Since the interstage con-
version of the device depends on the repeatability of
the rising and falling edges of the external clock, use a
clock with low jitter and fast rise and fall times (< 2ns).
Specifically, sampling occurs on the rising edge of the
clock signal, requiring this edge to provide the lowest
possible jitter. Any significant clock jitter limits the SNR
performance of the on-chip Rx ADC as follows:
where fIN represents the analog input frequency and
tAJ is the time of the clock jitter.
Clock jitter is especially critical for undersampling
applications. Consider the clock input as an analog
input and route away from any analog input or other
digital signal lines. The MAX19710 clock input operates
with an OVDD / 2 voltage threshold and accepts a 50%
±10% duty cycle.
When the clock signal is stopped at CLK input (CLK =
0V or OVDD), all internal registers hold their last value
and the MAX19710 saves the last power-management
mode or Tx/Rx/FD command. All converter circuits (Rx
ADC, Tx DAC, aux-ADC, and aux-DACs) hold their last
value. When the clock signal is restarted at CLK, allow
7.5s (clock wake-up time) for the internal clock circuit-
ry to settle before updating the Tx DAC, reading a valid
Rx ADC conversion result, or starting an aux-ADC con-
version. This ensures the converters (Rx ADC, Tx DAC,
aux-ADC) meet all dynamic performance specifica-
tions. The aux-DAC channels are not dependent on
CLK, so they may be updated when CLK is idle.
12-Bit, Auxiliary Control DACs
The MAX19710 includes three 12-bit aux-DACs (DAC1,
DAC2, DAC3) with 1s settling time for controlling vari-
able-gain amplifier (VGA), automatic gain-control
(AGC), and automatic frequency-control (AFC) func-
tions. The aux-DAC output range is 0.2V to 2.57V as
defined by VOH - VOL. During power-up, the VGA and
AGC outputs (DAC2 and DAC3) are at zero. The AFC
DAC (DAC1) is at 1.1V during power-up. The aux-DACs
can be independently controlled through the SPI bus,
except during SHDN mode where the aux-DACs are
turned off completely and the output voltage is set to
zero. In STBY and IDLE modes the aux-DACs maintain
the last value. On wake-up from SHDN, the aux-DACs
resume the last values.
Loading on the aux-DAC outputs should be carefully
observed to achieve the specified settling time and sta-
bility. The capacitive load must be kept to a maximum
of 5pF including package and trace capacitance. The
resistive load must be greater than 200kΩ. If capacitive
loading exceeds 5pF, then add a 10kΩ resistor in
series with the output. Adding the series resistor helps
drive larger load capacitance (< 15pF) at the expense
of slower settling time.
10-Bit, 333ksps Auxiliary ADC
The MAX19710 integrates a 333ksps, 10-bit aux-ADC
with an input 4:1 multiplexer. In the aux-ADC mode reg-
ister, setting bit AD0 begins a conversion with the auxil-
iary ADC. Bit AD0 automatically clears when the
conversion is complete. Setting or clearing AD0 during
a conversion has no effect (see Table 12). Bit AD1
determines the internal reference of the auxiliary ADC
(see Table 13). Bits AD2 and AD3 determine the auxil-
iary ADC input source (see Table 14). Bits AD4, AD5,
and AD6 select the number of averages taken when a
single start-convert command is given. The conversion
time increases as the number of averages increases
(see Table 15). The conversion clock can be divided
down from the system clock by properly setting bits
AD7, AD8, and AD9 (see Table 16). The aux-ADC out-
put data can be written out of DOUT by setting bit
AD10 high (see Table 17).
The aux-ADC features a 4:1 input multiplexer to allow
measurements on four input sources. The input sources
are selected by AD3 and AD2 (see Table 14). Two of
the multiplexer inputs (ADC1 and ADC2) can be con-
nected to external sources such as an RF power detec-
tor like the MAX2208 or temperature sensor like the
MAX6613. The other two multiplexer inputs are internal
connections to VDD and OVDD that monitor the power-
supply voltages. The internal VDD and OVDD connec-
tions are made through integrated dividers that yield
VDD / 2 and OVDD / 2 measurement results. The aux-
ADC voltage reference can be selected between an
internal 2.048V bandgap reference or VDD (see Table
13). The VDD reference selection is provided to allow
measurement of an external voltage source with a full-
scale range extending beyond the 2.048V level. The
input source voltage range cannot extend above VDD.
The conversion requires 12 clock edges (1 for input
sampling, 1 for each of the 10 bits, and 1 at the end for
loading into the serial output register) to complete one
conversion cycle (when no averaging is being done).
Each conversion of an average (when averaging is set
greater than 1) requires 12 clock edges. The conver-
sion clock is generated from the system clock input
(CLK). An SPI-programmable divider divides the system
log
SNR
ft
××
×
20
1
2
π
IN
AJ
相關(guān)PDF資料
PDF描述
MAX19711ETN+T IC ANLG FRNT END 56-TQFN
MAX19712ETN+T IC ANLG FRNT END 56-TQFN
MAX19713ETN+T IC ANLG FRNT END 56-TQFN
MAX271ENG+ IC FILTER LOWPASS PROG 24-DIP
MAX274ACWI+T IC FILTER ANALOG 8TH-ORD 28SOIC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MAX19710EVCMODU+ 功能描述:數(shù)據(jù)轉(zhuǎn)換 IC 開發(fā)工具 MAX19710 Eval System RoHS:否 制造商:Texas Instruments 產(chǎn)品:Demonstration Kits 類型:ADC 工具用于評(píng)估:ADS130E08 接口類型:SPI 工作電源電壓:- 6 V to + 6 V
MAX19710EVKIT 功能描述:數(shù)據(jù)轉(zhuǎn)換 IC 開發(fā)工具 RoHS:否 制造商:Texas Instruments 產(chǎn)品:Demonstration Kits 類型:ADC 工具用于評(píng)估:ADS130E08 接口類型:SPI 工作電源電壓:- 6 V to + 6 V
MAX19710EVKIT+ 功能描述:數(shù)據(jù)轉(zhuǎn)換 IC 開發(fā)工具 MAX19710/13 Eval Kit RoHS:否 制造商:Texas Instruments 產(chǎn)品:Demonstration Kits 類型:ADC 工具用于評(píng)估:ADS130E08 接口類型:SPI 工作電源電壓:- 6 V to + 6 V
MAX19711ETN 功能描述:ADC / DAC多通道 RoHS:否 制造商:Texas Instruments 轉(zhuǎn)換速率: 分辨率:8 bit 接口類型:SPI 電壓參考: 電源電壓-最大:3.6 V 電源電壓-最小:2 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-40
MAX19711ETN+ 功能描述:ADC / DAC多通道 11Msps CODEC/AFE Full Duplex RoHS:否 制造商:Texas Instruments 轉(zhuǎn)換速率: 分辨率:8 bit 接口類型:SPI 電壓參考: 電源電壓-最大:3.6 V 電源電壓-最小:2 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VQFN-40