MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
109
Thermal
19 Thermal
This section describes the thermal specifications of the MPC8641.
19.1
Thermal Characteristics
Table 71 provides the package thermal characteristics for the MPC8641.
19.2 Thermal Management Information
This section provides thermal management information for the high coefficient of thermal expansion
(HCTE) package for air-cooled applications. Proper thermal control design is primarily dependent on the
system-level design—the heat sink, airflow, and thermal interface material. The MPC8641 implements
several features designed to assist with thermal management, including the temperature diode. The
temperature diode allows an external device to monitor the die temperature in order to detect excessive
information.
To reduce the die-junction temperature, heat sinks are required; due to the potential large mass of the heat
sink, attachment through the printed-circuit board is suggested. In any implementation of a heat sink
solution, the force on the die should not exceed ten pounds force (45 newtons).
Figure 59 shows a spring
clip through the board. Occasionally the spring clip is attached to soldered hooks or to a plastic backing
structure. Screw and spring arrangements are also frequently used.
Table 71. Package Thermal Characteristics1
Characteristic
Symbol
Value
Unit
Notes
Junction-to-ambient thermal resistance, natural convection, single-layer (1s) board
RθJA
18
°C/W
1, 2
Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board
RθJA
13
°C/W
1, 3
Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board
RθJMA
13
°C/W
1, 3
Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board
RθJMA
9
°C/W
1, 3
Junction-to-board thermal resistance
RθJB
5
°C/W
4
Junction-to-case thermal resistance
RθJC
< 0.1
°C/W
5
Notes:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
5. This is the thermal resistance between die and case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1) with the calculated case temperature. Actual thermal resistance is less than 0.1 °C/W.