參數(shù)資料
型號(hào): MPC8544AVTAQG
廠商: Freescale Semiconductor
文件頁數(shù): 95/117頁
文件大?。?/td> 0K
描述: IC MPU POWERQUICC III 783-FCBGA
標(biāo)準(zhǔn)包裝: 1
系列: MPC85xx
處理器類型: 32-位 MPC85xx PowerQUICC III
速度: 1.0GHz
電壓: 1V
安裝類型: 表面貼裝
封裝/外殼: 783-BBGA,F(xiàn)CBGA
供應(yīng)商設(shè)備封裝: 783-FCPBGA(29x29)
包裝: 托盤
配用: MPC8544DS-ND - BOARD DEVELOPMENT SYSTEM 8544
MPC8544E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 6
Freescale Semiconductor
79
PCI Express
17.5
Receiver Compliance Eye Diagrams
The RX eye diagram in Figure 57 is specified using the passive compliance/test measurement load (see
Figure 58) in place of any real PCI Express RX component.
In general, the minimum receiver eye diagram measured with the compliance/test measurement load (see
Figure 58) will be larger than the minimum receiver eye diagram measured over a range of systems at the
input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due
to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express
component to vary in impedance from the compliance/test measurement load. The input receiver eye
diagram is implementation specific and is not specified. RX component designer should provide additional
margin to adequately compensate for the degraded minimum receiver eye diagram (shown in Figure 57)
expected at the input receiver based on some adequate combination of system simulations and the return
loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using
the jitter median to locate the center of the eye diagram.
LTX-SKEW
Total skew
20
ns
Skew across all lanes on a link. This includes
variation in the length of SKP ordered set (for
example, COM and one to five symbols) at
the RX as well as any delay differences
arising from the interconnect itself.
Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 58 should be used
as the RX device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 57). If the
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must
be used as a reference for the eye diagram.
3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter
distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget
collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median
describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged
time value. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500
consecutive UI must be used as the reference for the eye diagram.
4. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to
300 mV and the D– line biased to –300 mV and a common mode return loss greater than or equal to 6 dB (no bias required)
over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The
reference impedance for return loss measurements for is 50
Ω to ground for both the D+ and D– line (that is, as measured
by a vector network analyzer with 50-
Ω probes, see Figure 58). Note that the series capacitors CTX is optional for the return
loss measurement.
5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM)
there is a 5-ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
6. The RX DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps
ensure that the receiver detect circuit will not falsely assume a receiver is powered on when it is not. This term must be
measured at 300 mV above the RX ground.
7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and
simulated data.
Table 60. Differential Receiver (RX) Input Specifications (continued)
Symbol
Parameter
Min
Nom
Max
Units
Comments
相關(guān)PDF資料
PDF描述
IDT70T653MS15BC8 IC SRAM 18MBIT 15NS 256BGA
MPC8544AVTANG IC MPU POWERQUICC III 783-FCBGA
1-1734798-2 CONN HOUSING FPC 12POS R/A SMD
IDT70T3539MS133BC8 IC SRAM 18MBIT 133MHZ 256BGA
1-2013928-4 CONN FPC 37POS .3MM FLIP LOC SMD
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MPC8544AVTAQGA 制造商:Freescale Semiconductor 功能描述:PQ38K 8544 - Bulk
MPC8544AVTARJ 功能描述:微處理器 - MPU PQ3 8544 COMMERCIAL RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:536 MHz 程序存儲(chǔ)器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-324
MPC8544AVTARJA 功能描述:數(shù)字信號(hào)處理器和控制器 - DSP, DSC PQ38K 8544 RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時(shí)鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時(shí)器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT
MPC8544COMEDEV 功能描述:開發(fā)板和工具包 - 其他處理器 EXPRESS KIT RoHS:否 制造商:Freescale Semiconductor 產(chǎn)品:Development Systems 工具用于評(píng)估:P3041 核心:e500mc 接口類型:I2C, SPI, USB 工作電源電壓:
MPC8544CVTALF 功能描述:微處理器 - MPU PQ38K 8544 RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:536 MHz 程序存儲(chǔ)器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-324