參數(shù)資料
型號: MPX2102DP
廠商: Motorola, Inc.
元件分類: 壓力傳感器
英文描述: Sensor
中文描述: 傳感器
文件頁數(shù): 528/670頁
文件大?。?/td> 6375K
代理商: MPX2102DP
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁第318頁第319頁第320頁第321頁第322頁第323頁第324頁第325頁第326頁第327頁第328頁第329頁第330頁第331頁第332頁第333頁第334頁第335頁第336頁第337頁第338頁第339頁第340頁第341頁第342頁第343頁第344頁第345頁第346頁第347頁第348頁第349頁第350頁第351頁第352頁第353頁第354頁第355頁第356頁第357頁第358頁第359頁第360頁第361頁第362頁第363頁第364頁第365頁第366頁第367頁第368頁第369頁第370頁第371頁第372頁第373頁第374頁第375頁第376頁第377頁第378頁第379頁第380頁第381頁第382頁第383頁第384頁第385頁第386頁第387頁第388頁第389頁第390頁第391頁第392頁第393頁第394頁第395頁第396頁第397頁第398頁第399頁第400頁第401頁第402頁第403頁第404頁第405頁第406頁第407頁第408頁第409頁第410頁第411頁第412頁第413頁第414頁第415頁第416頁第417頁第418頁第419頁第420頁第421頁第422頁第423頁第424頁第425頁第426頁第427頁第428頁第429頁第430頁第431頁第432頁第433頁第434頁第435頁第436頁第437頁第438頁第439頁第440頁第441頁第442頁第443頁第444頁第445頁第446頁第447頁第448頁第449頁第450頁第451頁第452頁第453頁第454頁第455頁第456頁第457頁第458頁第459頁第460頁第461頁第462頁第463頁第464頁第465頁第466頁第467頁第468頁第469頁第470頁第471頁第472頁第473頁第474頁第475頁第476頁第477頁第478頁第479頁第480頁第481頁第482頁第483頁第484頁第485頁第486頁第487頁第488頁第489頁第490頁第491頁第492頁第493頁第494頁第495頁第496頁第497頁第498頁第499頁第500頁第501頁第502頁第503頁第504頁第505頁第506頁第507頁第508頁第509頁第510頁第511頁第512頁第513頁第514頁第515頁第516頁第517頁第518頁第519頁第520頁第521頁第522頁第523頁第524頁第525頁第526頁第527頁當前第528頁第529頁第530頁第531頁第532頁第533頁第534頁第535頁第536頁第537頁第538頁第539頁第540頁第541頁第542頁第543頁第544頁第545頁第546頁第547頁第548頁第549頁第550頁第551頁第552頁第553頁第554頁第555頁第556頁第557頁第558頁第559頁第560頁第561頁第562頁第563頁第564頁第565頁第566頁第567頁第568頁第569頁第570頁第571頁第572頁第573頁第574頁第575頁第576頁第577頁第578頁第579頁第580頁第581頁第582頁第583頁第584頁第585頁第586頁第587頁第588頁第589頁第590頁第591頁第592頁第593頁第594頁第595頁第596頁第597頁第598頁第599頁第600頁第601頁第602頁第603頁第604頁第605頁第606頁第607頁第608頁第609頁第610頁第611頁第612頁第613頁第614頁第615頁第616頁第617頁第618頁第619頁第620頁第621頁第622頁第623頁第624頁第625頁第626頁第627頁第628頁第629頁第630頁第631頁第632頁第633頁第634頁第635頁第636頁第637頁第638頁第639頁第640頁第641頁第642頁第643頁第644頁第645頁第646頁第647頁第648頁第649頁第650頁第651頁第652頁第653頁第654頁第655頁第656頁第657頁第658頁第659頁第660頁第661頁第662頁第663頁第664頁第665頁第666頁第667頁第668頁第669頁第670頁
3–382
Motorola Sensor Device Data
For More Information On This Product,
Go to: www.freescale.com
POWER SUPPLY
Since the sensor output is ratiometric with the supply volt-
age, any variation in supply voltage will also proportionally
appear at the output of the sensor. The integrated pressure
sensor is designed, characterized and trimmed to be powered
with a 5 V +/– 5% power supply which can supply the maxi-
mum 10 mA current requirement of the sensor. Powering the
integrated sensor at another voltage than specified is not rec-
ommended because the offset, temperature coefficient of off-
set (TCO) and temperature coefficient of span (TCS) trim will
be invalidated and will affect the sensor accuracy.
From a noise point of view, adequate de–coupling is impor-
tant. A 0.33
μ
F to 1.0
μ
F ceramic capacitor in parallel with a
0.01
μ
F ceramic capacitor works well for this purpose. Also,
with respect to noise, it is preferable to use a linear regulator
such as an MC78L05 rather than a relatively more noisy
switching power supply 5 volt output. An additional consider-
ation is that the power to the sensor and the A/D voltage refer-
ence should be tied to the same supply. Doing this takes
advantage of the sensor output ratiometricity. Since the A/D
resolution is also ratiometric to its reference voltage, varia-
tions in supply voltage will be canceled by the system.
LAYOUT OPTIMIZATION
In mixed analog and digital systems, layout is a critical part
of the total design. Often, getting a system to work properly
depends as much on layout as on the circuit design. The fol-
lowing discussion covers some general layout principles, digi-
tal section layout and analog section layout.
General Principles:
There are several general layout principles that are impor-
tant in mixed systems. They can be described as five rules:
Rule 1: Minimize Loop Areas.
This is a general principle
that applies to both analog and digital circuits. Loops are
antennas. At noise sensitive inputs, the area enclosed by an
incoming signal path and its return is proportional to the
amount of noise picked up by the input. At digital output ports,
the amount of noise that is radiated is also proportional to
loop area.
Rule 2: Cancel fields by running equal currents that
flow in opposite directions as close as possible to each
other.
If two equal currents flow in opposite directions, the
resulting electromagnetic fields will cancel as the two currents
are brought infinitely close together. In printed circuit board
layout, this situation can be approximated by running signals
and their returns along the same path but on different layers.
Field cancellation is not perfect due to the finite physical sepa-
ration, but is sufficient to warrant serious attention in critical
paths. Looked at from a different perspective, this is another
way of looking at Rule # 1, i.e., minimize loop areas.
Rule 3: On traces that carry high speed signals avoid 90
degree angles, including “T” connections.
If you think of
high speed signals in terms of wavefronts moving down a
trace, the reason for avoiding 90 degree angles is simple. To
a high speed wavefront, a 90 degree angle is a discontinuity
that produces unwanted reflections. From a practical point of
view, 90 degree turns on a single trace are easy to avoid by
using two 45 degree angles or a curve. Where two traces
come together to form a “T” connection, adding some material
to cut across the right angles accomplishes the same thing.
Rule 4: Connect signal circuit grounds to power
grounds at only one point.
The reason for this constraint is
that transient voltage drops along the power grounds can be
substantial, due to high values of di/dt flowing through finite in-
ductance. If signal processing circuit returns are connected to
power ground at multiple points, then these transients will
show up as return voltage differences at different points in the
signal processing circuitry. Since signal processing circuitry
seldom has the noise immunity to handle power ground tran-
sients, it is generally necessary to tie signal ground to power
ground at only one point.
Rule 5: Use ground planes selectively.
Although ground
planes are highly beneficial when used with digital circuitry, in
the analog world they are better used selectively. A single
ground plane on an analog board puts parasitic capacitance
in places where it is not desired, such as at the inverting inputs
of op amps. Ground planes also limit efforts to take advantage
of field cancellation, since the return is distributed.
ANALOG LAYOUT
In analog systems, both minimizing loop areas and field
cancellation are useful design techniques. Field cancellation
is applicable to power and ground traces, where currents are
equal and opposite. Running these two traces directly over
each other provides field cancellation for unwanted noise, and
minimum loop area.
Figure 8 illustrates the difference between a power supply
de–coupling loop that has been routed correctly and one that
has not. In this figure, the circles represent pads, the sche-
matic symbols show the components that are connected to the
pads, and the routing layers are shown as dark lines (top
trace) or grey lines (bottom trace). Note that by routing the two
traces one over the other that the critical loop area is mini-
mized. In addition, it is important to keep de–coupling capaci-
tors close to active devices such as MPX5000–series sensors
and operational amplifiers. As a rule of thumb, when 50 mil
ground and Vcc traces are used, it is not advisable to have
more than 1 inch between a de–coupling capacitor and the
active device that it is intended to be de–coupled.
Figure 8. Minimizing Loop Areas
SENSOR
SENSOR
RECOMMENDED
AVOID
+5 V
GND
+5 V
GND
TOP TRACE
BOT TRACE
F
Freescale Semiconductor, Inc.
n
.
相關PDF資料
PDF描述
MPX2102GP Sensor
MPX2102GSX Sensor
MPX2102GVP Sensor
MPX2202A Sensor
MPX2202AP Sensor
相關代理商/技術參數(shù)
參數(shù)描述
MPX2102GP 功能描述:板上安裝壓力/力傳感器 UNIBODY COMPENSATED RoHS:否 制造商:Honeywell 工作壓力:0 bar to 4 bar 壓力類型:Gage 準確性:+ / - 0.25 % 輸出類型:Digital 安裝風格:Through Hole 工作電源電壓:5 V 封裝 / 箱體:SIP 端口類型:Dual Radial Barbed, Same sides
MPX2102GSX 制造商:MOTOROLA 制造商全稱:Motorola, Inc 功能描述:Sensor
MPX2102GVP 功能描述:板上安裝壓力/力傳感器 UNIBODY COMPENSATED RoHS:否 制造商:Honeywell 工作壓力:0 bar to 4 bar 壓力類型:Gage 準確性:+ / - 0.25 % 輸出類型:Digital 安裝風格:Through Hole 工作電源電壓:5 V 封裝 / 箱體:SIP 端口類型:Dual Radial Barbed, Same sides
MPX-2103 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Ultra-Fast-Recovery Rectifier Diodes
MPX21W1100FA00MB00 功能描述:薄膜電容器 MP 3-X2 1000 pF 275 VAC 4x8.5x13.5 F PCM10 RoHS:否 制造商:Cornell Dubilier 產(chǎn)品類型: 電介質:Polyester 電容:0.047 uF 容差:10 % 電壓額定值:100 V 系列:225P 工作溫度范圍:- 55 C to + 85 C 端接類型:Radial 引線間隔:9.5 mm