參數(shù)資料
型號(hào): CR16HCT9VJE8
英文描述: Microcontroller
中文描述: 微控制器
文件頁(yè)數(shù): 36/157頁(yè)
文件大小: 1256K
代理商: CR16HCT9VJE8
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)當(dāng)前第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)
www.national.com
36
11.0
Power Management
The Power Management Module (PMM) improves the effi-
ciency of the device by changing the operating mode (and
therefore the power consumption) according to the required
level of device activity.
The device can operate in any of four power modes:
— Active
— Power Save
— Idle
— Halt
Table 12 summarizes the main properties of the four operat-
ing modes: the state of the high-frequency oscillator (on or
off), the type of clock used by most modules, and the clock
used by the Timing and Watchdog Module (TWM).
Table 12
Power Mode Operating Summary
The low-frequency oscillator continues to operate in all four
modes and power must be provided continuously to the de-
vice power supply pins. In the Halt mode, however, the inter-
nal SLCLK does not toggle, and as a result, the TWM timer
and Watchdog Module do not operate. For the Power Save
and Idle modes, the high-frequency oscillator can be turned
on or off under software control, as long as the low-frequency
oscillator is used.
11.1
In the Active mode, all device modules are fully operational.
This is the operating mode upon reset. Most device modules
use the clock generated by the high-frequency clock oscilla-
tor. The clock rate is determined by the external crystal net-
work.
Power consumption in the Active mode can be reduced by
selectively disabling unused modules and/or by executing
the WAIT instruction. When WAIT is executed, the core stops
executing new instructions and waits for an interrupt.
ACTIVE MODE
11.2
In the Power Save mode, all device modules operate off the
low-frequency clock. If the low-frequency clock is generated
from an external crystal network, the high-frequency clock
oscillator can be turned off to further reduce power consump-
tion.
All on-chip modules continue to operate in the Power Save
mode, with the SLCLK acting as their system clock. If this
mode is entered by using the WAIT command, the CPU is in-
active and waits for an interrupt to wake up. Otherwise, CPU
continues to function normally at the lower frequency of the
slow clock.
The low frequency of the clock in Power Save mode limits the
operation of modules such as the USARTs, MICROWIRE in-
terface, A/D Converter, and timers because they are driven
POWER SAVE MODE
by the slow clock rather than the normal high-speed clock. In
order to work properly in Power Save mode, modules that
perform real-time operations (such as a USART baud rate
generator) must be reprogrammed to use the slower clock.
To reduce power consumption as much as possible, the pro-
gram should execute a WAIT instruction during periods of
CPU inactivity.
11.3
In the Idle mode, the clock is stopped for most of the device.
Only the Power Management Module and Timing and Watch-
dog Module continue to operate. Both of these modules use
the slow clock in this mode.
IDLE MODE
11.4
In the Halt mode, all device clocks are disabled and the high-
frequency oscillator is shut off. In this mode, the device con-
sumes the least possible power while maintaining the device
memory and register contents. The low-frequency oscillator
continues to operate in this mode, but with very low power
consumption due to its power-optimized design.
HALT MODE
11.5
CLOCK INPUTS AND RESET
CONFIGURATION
The system uses a high frequency clock Active mode. The
source of this clock in the device is a high frequency crystal
oscillator. The Oscillating High Frequency Clock (OHFC) in-
put indicates to the Power Management Module (PMM)
when this clock is stable and therefore usable. The clock can
be used when OHFC is set to 1. The PMM does not use the
high frequency clock when OHFC is set to 0. OHFC can be
the output of a clock monitor or a strapped input signal to this
module.
The low frequency clock is used in Power Save mode as the
system clock source. In Idle mode, it is used as the clock
source for the PMM and the TWM, both of which remain
clocked. The clock source may be a low frequency clock os-
cillator or the prescaler from the high frequency clock.
The Oscillating Low Frequency Clock (OLFC) input indicates
to the PMM when the clock is stable and therefore usable.
When OLFC is set to 1, it indicates that the clock can be
used. When OLFC is set to 0, the PMM does not use the low
frequency clock. OLFC is generated by the “slow clock good”
output of the Dual Clock and Reset module (CLK2RES).
While in reset (i.e., the reset signal is active), the PMM out-
puts the clock as long as the clock selected for use upon re-
set is stable (OHFC or OLFC are 1). If the clock selected is
not stable, the PMM clock output remains low.
11.6
Switching from a higher to a lower power consumption mode
is accomplished by writing an appropriate value to the Power
Management Control/Status Register (PMCSR). Switching
from a lower power consumption mode to the Active mode is
usually triggered by a hardware interrupt. Figure 6 shows the
four power consumption modes and the events that trigger a
transition from one mode to another.
Some of the power-up transitions are based on the occur-
rence of a wake-up event. An event of this type can be either
SWITCHING BETWEEN POWER MODES
Mode
High-Frequency
Oscillator
Clock Used TWM Clock
Active
Power Save On or Off
Idle
Halt
On
Main Clock
Slow Clock
None
None
Slow Clock
Slow Clock
Slow Clock
None
On or Off
Off
相關(guān)PDF資料
PDF描述
CR16HCT9VJE8Y Microcontroller
CR16HCT9VJE9 Microcontroller
CR16HCT9VJE9Y Microcontroller
CR16MCT5VJE8Y Microcontroller
CR16MCT5VJE9Y Microcontroller
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CR16HCT9VJE8Y 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:Microcontroller
CR16HCT9VJE9 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:Microcontroller
CR16HCT9VJE9Y 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:Microcontroller
CR16HCT9VJEX 制造商:NSC 制造商全稱(chēng):National Semiconductor 功能描述:CR16MCT9/CR16MCT5/CR16HCT9/CR16HCT5 16-Bit Reprogrammable/ROM Microcontroller
CR16HCT9VJEXY 制造商:NSC 制造商全稱(chēng):National Semiconductor 功能描述:CR16MCT9/CR16MCT5/CR16HCT9/CR16HCT5 16-Bit Reprogrammable/ROM Microcontroller