參數(shù)資料
型號(hào): CYP15G0201DXB
廠商: Cypress Semiconductor Corp.
英文描述: PLENUM VGA VIDEO CABLE 100 FT -MM
中文描述: 雙通道HOTLink II收發(fā)器
文件頁(yè)數(shù): 38/46頁(yè)
文件大?。?/td> 577K
代理商: CYP15G0201DXB
CYP15G0201DXB
CYV15G0201DXB
Document #: 38-02058 Rev. *G
Page 38 of 46
X3.230 Codes and Notation Conventions
Information to be transmitted over a serial link is encoded eight
bits at a time into a 10-bit Transmission Character and then
sent serially, bit by bit. Information received over a serial link
is collected ten bits at a time, and those Transmission
Characters that are used for data (Data Characters) are
decoded into the correct eight-bit codes. The 10-bit Trans-
mission Code supports all 256 8-bit combinations. Some of the
remaining Transmission Characters (Special Characters) are
used for functions other than data transmission.
The primary rationale for use of a Transmission Code is to
improve the transmission characteristics of a serial link. The
encoding defined by the Transmission Code ensures that suffi-
cient transitions are present in the serial bit stream to make
clock recovery possible at the Receiver. Such encoding also
greatly increases the likelihood of detecting any single or
multiple bit errors that may occur during transmission and
reception of information. In addition, some Special Characters
of the Transmission Code selected by Fibre Channel Standard
contain a distinct and easily recognizable bit pattern (the
Special Character COMMA) that assists a Receiver in
achieving character alignment on the incoming bit stream.
Notation Conventions
The documentation for the 8B/10B Transmission Code uses
letter notation for the bits in an 8-bit byte. Fibre Channel
Standard notation uses a bit notation of A, B, C, D, E, F, G, H
for the 8-bit byte for the raw 8-bit data, and the letters a, b, c,
d, e, i, f, g, h, j for encoded 10-bit data. There is a correspon-
dence between bit A and bit a, B and b, C and c, D and d, E
and e, F and f, G and g, and H and h. Bits i and j are derived,
respectively, from (A,B,C,D,E) and (F,G,H).
The bit labeled A in the description of the 8B/10B Transmission
Code corresponds to bit 0 in the numbering scheme of the
FC-2 specification, B corresponds to bit 1, as shown below.
FC-2 bit designation—
HOTLink D/Q designation— 7
8B/10B bit designation—
To clarify this correspondence, the following example shows
the conversion from an FC-2 Valid Data Byte to a Transmission
Character (using 8B/10B Transmission Code notation)
FC-2
45
Bits: 7654 3210
7
6
6
5
5
4
4
E
3
3
D C B
2
2
1
1
0
0
A
H G F
0100 0101
Converted to 8B/10B notation (note carefully that the order of
bits is reversed):
Data Byte Name
D5.2
Bits:ABCDEFGH
10100 010
Translated to a transmission Character in the 8B/10B Trans-
mission Code:
Bits: abcdeifghj
1010010101
Each valid Transmission Character of the 8B/10B Trans-
mission Code has been given a name using the following
convention: cxx.y, where c is used to show whether the Trans-
mission Character is a Data Character (c is set to D, and SC/D
= LOW) or a Special Character (c is set to K, and SC/D =
HIGH). When c is set to D, xx is the decimal value of the binary
number composed of the bits E, D, C, B, and A in that order,
and the y is the decimal value of the binary number composed
of the bits H, G, and F in that order. When c is set to K, xx and
y are derived by comparing the encoded bit patterns of the
Special Character to those patterns derived from encoded
Valid Data bytes and selecting the names of the patterns most
similar to the encoded bit patterns of the Special Character.
Under the above conventions, the Transmission Character
used for the examples above, is referred to by the name D5.2.
The Special Character K29.7 is so named because the first six
bits (abcdei) of this character make up a bit pattern similar to
that resulting from the encoding of the unencoded 11101
pattern (29), and because the second four bits (fghj) make up
a bit pattern similar to that resulting from the encoding of the
unencoded 111 pattern (7).This definition of the 10-bit Trans-
mission Code is based on the following references.
A.X. Widmer and P.A. Franaszek. “A DC-Balanced, Parti-
tioned-Block, 8B/10B Transmission Code”
IBM Journal of
Research and Development
, 27, No. 5: 440
451 (September,
1983).
U.S. Patent 4,486,739. Peter A. Franaszek and Albert X.
Widmer. “Byte-Oriented DC Balanced (0.4) 8B/10B Parti-
tioned Block Transmission Code” (December 4, 1984).
Fibre Channel Physical and Signaling Interface (ANS
X3.230
1994 ANSI FC
PH Standard).
IBM Enterprise Systems Architecture/390 ESCON I/O
Interface (document number SA22
7202).
8B/10B Transmission Code
The following information describes how the tables shall be
used for both generating valid Transmission Characters
(encoding) and checking the validity of received Transmission
Characters (decoding). It also specifies the ordering rules to
be followed when transmitting the bits within a character and
the characters within any higher-level constructs specified by
the standard.
Transmission Order
Within the definition of the 8B/10B Transmission Code, the bit
positions of the Transmission Characters are labeled a, b, c,
d, e, i, f, g, h, j. Bit “a” is transmitted first followed by bits b, c,
d, e, i, f, g, h, and j in that order.
Note that bit i is transmitted between bit e and bit f, rather than
in alphabetical order.)
Valid and Invalid Transmission Characters
The following tables define the valid Data Characters and valid
Special Characters (K characters), respectively. The tables
are used for both generating valid Transmission Characters
(encoding) and checking the validity of received Transmission
Characters (decoding). In the tables, each Valid-Data-byte or
Special-Character-code entry has two columns that represent
two (not necessarily different) Transmission Characters. The
two columns correspond to the current value of the running
disparity (“Current RD
” or “Current RD+”). Running disparity
is a binary parameter with either a negative (
) or positive (+)
value.
After powering on, the Transmitter may assume either a
positive or negative value for its initial running disparity. Upon
transmission of any Transmission Character, the transmitter
will select the proper version of the Transmission Character
based on the current running disparity value, and the Trans-
相關(guān)PDF資料
PDF描述
CYP15G0201DXB-BBC ULTRA-THIN SVGA CABLE 10FT MALE/MALE
CYP15G0201DXB-BBI ULTRA-THIN SVGA CABLE 15FT MALE/MALE
CYV15G0201DXB Dual-channel HOTLink II Transceiver
CYV15G0201DXB-BBC Dual-channel HOTLink II Transceiver
CYV15G0404RB-BGC Independent Clock Quad HOTLink Reclocking Deserializer
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CYP15G0201DXB_05 制造商:CYPRESS 制造商全稱(chēng):Cypress Semiconductor 功能描述:Dual-channel HOTLink II⑩ Transceiver
CYP15G0201DXB-BBC 功能描述:電信線路管理 IC Dual Channel XCVR 1.5Gbps Bckplane COM RoHS:否 制造商:STMicroelectronics 產(chǎn)品:PHY 接口類(lèi)型:UART 電源電壓-最大:18 V 電源電壓-最小:8 V 電源電流:30 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VFQFPN-48 封裝:Tray
CYP15G0201DXB-BBI 功能描述:電信線路管理 IC Dual Channel XCVR 1.5Gbps Bckplane IND RoHS:否 制造商:STMicroelectronics 產(chǎn)品:PHY 接口類(lèi)型:UART 電源電壓-最大:18 V 電源電壓-最小:8 V 電源電流:30 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VFQFPN-48 封裝:Tray
CYP15G0201DXB-BBXC 功能描述:電信線路管理 IC Dual Channel XCVR 1.5Gbps Bckplane COM RoHS:否 制造商:STMicroelectronics 產(chǎn)品:PHY 接口類(lèi)型:UART 電源電壓-最大:18 V 電源電壓-最小:8 V 電源電流:30 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VFQFPN-48 封裝:Tray
CYP15G0201DXB-BBXI 功能描述:電信線路管理 IC Dual Channel XCVR 1.5Gbps Bckplane IND RoHS:否 制造商:STMicroelectronics 產(chǎn)品:PHY 接口類(lèi)型:UART 電源電壓-最大:18 V 電源電壓-最小:8 V 電源電流:30 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:VFQFPN-48 封裝:Tray