MT90880/1/2/3
Data Sheet
56
Zarlink Semiconductor Inc.
Where packets have to sent across a routed network, rather than a simple switched Ethernet, IP can be
used to provide the network layer. CDP can sit directly on top of the IP layer, but in this case a protocol
number will need to be assigned.
Ethernet - IPv4 - UDP - CDP
Where packets have to sent across a routed network, rather than a simple switched Ethernet, IP can be
used to provide the network layer. The use of UDP as the transport layer enables TDM traffic from several
different devices to be identified by use of different port numbers, and also removes the need for a protocol
number to be assigned to CDP.
Ethernet - MPLS - CDP
An alternative to IP for a routed network is to use MPLS. An MPLS tunnel label in the header is used to
route the packet across the network. An optional inner label could be used to identify different traffic
classes, with the CDP fulfilling the role of a "Martini" style encapsulation layer.
6.6.2 Shadow Headers
The Packet Transmit block also maintains a "shadow" header for each context. This is used for context
modification, for example addition of deletion of channels. Any header changes required by a context
modification are programmed into the shadow header in advance. When the changes are complete, the
"shadow" header is swapped with the existing header for the first packet containing the new context payload.
6.7 Ethernet MAC
The MT9088x family of devices contain two separate, IEEE standard 802.3 compliant, 10/100 Mbs Ethernet
MACs (see reference 1, Table 2). Each MAC is connected to a Physical Layer (PHY) device via a Media
Independent Interface (MII) or Reduced Media Independent Interface (RMII) (reference 3, Table 2). The MAC is
responsible for data encapsulation/decapsulation. This includes frame alignment and synchronization, and
detection of physical medium transmission errors. The MAC is capable of both full and half-duplex operation. In
half-duplex mode it manages the collision avoidance and contention resolution process. In the event of a
collision, the MAC will back off and attempt to re-send the packet up to 16 times.
Packets for transmission are forwarded to the MAC by the Packet Transmit block. The MAC appends the frame
check sequence, and generates the preamble and start of frame delimiter before transmitting out of the MII or
RMII port.
During packet reception, the MAC receive section verifies that the frame check sequence is correct, and that
the packet is a valid length. Packets with an invalid frame check sequence, and data packets longer than 1518
bytes (1522 with VLAN tag) and shorter than 64 bytes are dropped. The MAC also checks the destination field
to determine if the packet is intended for the device. If the packet is accepted, it is forwarded on for packet
classification, and to be entered into the appropriate destination queue. Illegal packets, or packets intended for
a different destination are discarded.
The MAC also collects statistics on the different types of packets transmitted and received on the Ethernet. The
statistics collected are sufficient to enable the CPU to support the Interfaces sections of some common MIBs.
Features include:
IEEE 802.3 compliant operation at 10 and 100 Mbs
Industry-standard MII and RMII interfaces to the physical layer devices
Full and half-duplex operation
Generates preamble, start-of-frame delimiter and frame check sequence
Collision avoidance and contention resolution in half-duplex mode
Verifies frame check sequence and frame length, discarding frames that contain errors
Statistics collection for common MIB support: