參數(shù)資料
型號: AD5305ARMZ
廠商: Analog Devices Inc
文件頁數(shù): 5/24頁
文件大?。?/td> 0K
描述: IC DAC 8BIT 2WIRE I2C 10-MSOP
產(chǎn)品培訓(xùn)模塊: Data Converter Fundamentals
DAC Architectures
標(biāo)準(zhǔn)包裝: 50
設(shè)置時間: 6µs
位數(shù): 8
數(shù)據(jù)接口: I²C,串行
轉(zhuǎn)換器數(shù)目: 4
電壓電源: 單電源
功率耗散(最大): 5mW
工作溫度: -40°C ~ 105°C
安裝類型: 表面貼裝
封裝/外殼: 10-TFSOP,10-MSOP(0.118",3.00mm 寬)
供應(yīng)商設(shè)備封裝: 10-MSOP
包裝: 管件
輸出數(shù)目和類型: 4 電壓,單極;4 電壓,雙極
采樣率(每秒): 167k
產(chǎn)品目錄頁面: 782 (CN2011-ZH PDF)
AD5305/AD5315/AD5325
Rev. G | Page 13 of 24
TERMINOLOGY
Relative Accuracy
For the DAC, relative accuracy or integral nonlinearity (INL) is
a measure of the maximum deviation, in LSB, from a straight
line passing through the endpoints of the DAC transfer
function. Typical INL versus code plots can be seen in Figure 4,
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between the
measured change and the ideal 1 LSB change between any two
adjacent codes. A specified differential nonlinearity of ±1 LSB
maximum ensures monotonicity. This DAC is guaranteed
monotonic by design. Typical DNL vs. code plots can be seen in
Offset Error
This is a measure of the offset error of the DAC and the output
amplifier. It is expressed as a percentage of the full-scale range.
Gain Error
This is a measure of the span error of the DAC. It is the
deviation in slope of the actual DAC transfer characteristic from
the ideal expressed as a percentage of the full-scale range.
Offset Error Drift
This is a measure of the change in offset error with changes in
temperature. It is expressed in (ppm of full-scale range)/°C.
Gain Error Drift
This is a measure of the change in gain error with changes in
temperature. It is expressed in (ppm of full-scale range)/°C.
Power Supply Rejection Ratio (PSRR)
This indicates how the output of the DAC is affected by changes
in the supply voltage. PSRR is the ratio of the change in VOUT to
a change in VDD for full-scale output of the DAC. It is measured
in dB. VREF is held at 2 V and VDD is varied ±10%.
DC Crosstalk
This is the dc change in the output level of one DAC at midscale
in response to a full-scale code change (all 0s to all 1s and vice
versa) and output change of another DAC. It is expressed in μV.
Reference Feedthrough
This is the ratio of the amplitude of the signal at the DAC
output to the reference input when the DAC output is not being
updated. It is expressed in dB.
Major-Code Transition Glitch Energy
Major-code transition glitch energy is the energy of the impulse
injected into the analog output when the code in the DAC
register changes state. It is normally specified as the area of the
glitch in nV-s and is measured when the digital code is changed
by 1 LSB at the major carry transition (011 . . . 11 to 100 . . . 00,
or 100 . . . 00 to 011 . . . 11).
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into
the analog output of the DAC from the digital input pins of the
device when the DAC output is not being updated. It is specified
in nV-s and is measured with a worst-case change on the digital
input pins, for example, from all 0s to all 1s or vice versa.
Digital Crosstalk
This is the glitch impulse transferred to the output of one DAC
at midscale in response to a full-scale code change (all 0s to all
1s and vice versa) in the input register of another DAC. It is
expressed in nV-s.
DAC-to-DAC Crosstalk
This is the glitch impulse transferred to the output of one DAC
due to a digital code change and subsequent output change of
another DAC. This includes both digital and analog crosstalk. It
is measured by loading one of the DACs with a full-scale code
change (all 0s to all 1s and vice versa) with the LDAC bit set low
and monitoring the output of another DAC. The energy of the
glitch is expressed in nV-s.
Multiplying Bandwidth
The amplifiers within the DAC have a finite bandwidth. The
multiplying bandwidth is a measure of this. A sine wave on the
reference (with full-scale code loaded to the DAC) appears on
the output. The multiplying bandwidth is the frequency at
which the output amplitude falls to 3 dB below the input.
Total Harmonic Distortion (THD)
This is the difference between an ideal sine wave and its
attenuated version using the DAC. The sine wave is used as the
reference for the DAC and the THD is a measure of the
harmonics present on the DAC output. It is measured in dB.
相關(guān)PDF資料
PDF描述
AD5428YRUZ IC DAC 8BIT DUAL MULT 20TSSOP
VI-J5X-MZ-F2 CONVERTER MOD DC/DC 5.2V 25W
MS3102R28-13P CONN RCPT 26POS BOX MNT W/PINS
VI-J5X-MZ-F1 CONVERTER MOD DC/DC 5.2V 25W
VE-BNM-MV-F1 CONVERTER MOD DC/DC 10V 150W
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD5305ARMZ1 制造商:AD 制造商全稱:Analog Devices 功能描述:2.5 V to 5.5 V, 500 muA, 2-Wire Interface Quad Voltage Output, 8-/10-/12-Bit DACs
AD5305ARMZ-REEL7 功能描述:IC DAC 8BIT 2WIRE I2C 10MSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:- 產(chǎn)品培訓(xùn)模塊:Data Converter Fundamentals DAC Architectures 設(shè)計資源:Unipolar, Precision DC Digital-to-Analog Conversion using AD5450/1/2/3 8-14-Bit DACs (CN0052) Precision, Bipolar, Configuration for AD5450/1/2/3 8-14bit Multiplying DACs (CN0053) AC Signal Processing Using AD5450/1/2/3 Current Output DACs (CN0054) Programmable Gain Element Using AD5450/1/2/3 Current Output DAC Family (CN0055) Single Supply Low Noise LED Current Source Driver Using a Current Output DAC in the Reverse Mode (CN0139) 標(biāo)準(zhǔn)包裝:10,000 系列:- 設(shè)置時間:- 位數(shù):12 數(shù)據(jù)接口:DSP,MICROWIRE?,QSPI?,串行,SPI? 轉(zhuǎn)換器數(shù)目:1 電壓電源:單電源 功率耗散(最大):- 工作溫度:-40°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:SOT-23-8 薄型,TSOT-23-8 供應(yīng)商設(shè)備封裝:TSOT-23-8 包裝:帶卷 (TR) 輸出數(shù)目和類型:1 電流,單極;1 電流,雙極 采樣率(每秒):2.7M
AD5305ARMZ-REEL71 制造商:AD 制造商全稱:Analog Devices 功能描述:2.5 V to 5.5 V, 500 muA, 2-Wire Interface Quad Voltage Output, 8-/10-/12-Bit DACs
AD5305BRM 制造商:Analog Devices 功能描述:DAC 4-CH Resistor-String 8-bit 10-Pin MSOP 制造商:Rochester Electronics LLC 功能描述:8-BIT QUAD I2C DAC I.C. - Bulk 制造商:Analog Devices 功能描述:8BIT DAC QUAD SMD 5305 MSOP10
AD5305BRM-REEL 制造商:Analog Devices 功能描述:DAC 4-CH Resistor-String 8-bit 10-Pin MSOP T/R