參數(shù)資料
型號(hào): CR16HCS9VJE7Y
英文描述: Microcontroller
中文描述: 微控制器
文件頁(yè)數(shù): 153/157頁(yè)
文件大?。?/td> 1256K
代理商: CR16HCS9VJE7Y
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)當(dāng)前第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)
153
www.national.com
1. Message sent from another CAN node received into
buffer 1.
Buffer 1 and buffer 2 are tagged for reception of this
message.
2. Message sent from another CAN node received into
buffer 3 (ID=0x15555003).
Only buffer 3 is now tagged for reception.
3. CAN buffer 0 sends a frame (status set to TX_ONCE).
4. Status of CAN buffer 1 and 2 remains RX_READY, be-
cause they have not received the message sent by buff-
er 0.
26.1.3
CR16CAN Problem Solutions
Reset receive buffer tags before transmitting a message
The receive tag of a CAN receive buffer is reset when the
CPU updates the buffer status in the CNSTAT.ST-field to any
value which disables the receive buffer. Therefore the user
should write the sequence RX_NOT_ACTIVE - RX_READY
to all receive buffers which have an identifier filter matching
the identifier of the frame to be sent next before the message
is sent.
Modified CAN Communication Sequence:
(BUFFLOCK disabled)
The same CAN buffer settings as described in also apply to
this example.
1. Message sent from another CAN node received into
buffer 1.
Buffer 1 and buffer 2 are tagged for reception of this
message.
2. CPU reads out data from CAN buffer 1 and resets the
buffer state from RX_FULL to RX_READY.
3. Write RX_NOT_ACTIVE to CNSTAT.ST-field of buffer 1
and buffer 2.
Buffer 1 and buffer 2 are NOT tagged for reception any-
more.
4. Write RX_READY to CNSTAT.ST-field of buffer 1 and
buffer 2.
5. CAN buffer 0 sends a frame (status set to TX_ONCE).
6. Status of CAN buffer 1 remains RX_READY, because it
has NOT received the message sent by buffer 0.
Advantage:
No receive buffer is overwritten by a message sent by the
same CR16CAN node.
Disadvantage:
The corresponding receive buffers must be disabled for a
short period of time. During this time, when the receive buff-
ers are in the RX_NOT_ACTIVE state, correct incoming
messages from other CAN nodes will get lost.
This method is more suitable compared to the method de-
scribed in Section , if the number of transmit buffers with
identifier ID_RX_TX is lower than the number of receive buff-
ers set up with the corresponding identifier mask.
Reset receive buffer tags after reception of a message
The receive tag of a CAN receive buffer is reset when the
CPU updates the buffer status in the CNSTAT.ST-field to any
value which disables the receive buffer. Therefore the user
should write the sequence RX_NOT_ACTIVE - RX_READY
to this receive buffer, which has received the latest message.
Modified CAN Communication Sequence:
In the CAN communication example described below, the
buffer 14 is set up as basic CAN path, which is able to receive
all standard frames. The buffers 1 to 13 cannot receive the
frame sent by buffer 0.
Filter Masks:
BMSKB = 0xFFF0
BMSKX = 0x0000
Buffer configuration
:
1. Message sent from another CAN node received into
buffer 14.
Buffer 14 is tagged for reception of this message.
2. CPU reads out data from CAN buffer 14.
3. Write RX_NOT_ACTIVE to CNSTAT.ST-field of buffer
14.
Buffer 14 is NOT tagged for reception anymore.
4. Write RX_READY to CNSTAT.ST-field of buffer 14.
5. CAN buffer 0 sends a frame (status set to TX_ONCE).
6. Status of CAN buffer 14 remains RX_READY, because
it has NOT received the message sent by buffer 0.
Advantage:
No receive buffer is overwritten by a message sent by the
same CR16CAN node.
Disadvantage:
The corresponding receive buffers must be disabled for a
short period of time. During this time, when the receive buff-
ers are in the RX_NOT_ACTIVE state, correctly incoming
messages from other CAN nodes will get lost.
This method is more suitable compared to the method de-
scribed in Section , if the number of transmit buffers with
identifier ID_RX_TX is higher than the number of receive
buffers set up with the corresponding identifier mask. This is
the case if only the basic CAN path to buffer 14 is configured
to receive a range of identifiers, including the identifier
ID_RX_TX. All other buffers are configured with unique iden-
tifier filters.
Receive all frames and discard those, which were sent
by the same CR16CAN node.
Another approach to overcome this problem uses the Time
Stamp counter of the CR16CAN module to determine,
whether a message was sent and received at the same time.
This is the case when a transmitted frame is received by the
same CAN node.
CAN Buffer
Number
CAN Buffer Status
Buffer Identifier
0
TX_NOT_ACTIVE
any standard frame
14
RX_READY
ID1.IDE bit = 1
相關(guān)PDF資料
PDF描述
CR16HCS9VJE8Y Microcontroller
CR16HCT5
CR16HCT5VJE7Y Microcontroller
CR16HCT5VJE8Y Microcontroller
CR16HCT5VJE9Y Microcontroller
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CR16HCS9VJE8 制造商:NSC 制造商全稱:National Semiconductor 功能描述:Family of 16-bit CAN-enabled CompactRISC Microcontrollers
CR16HCS9VJE8Y 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Microcontroller
CR16HCS9VJE9 制造商:NSC 制造商全稱:National Semiconductor 功能描述:Family of 16-bit CAN-enabled CompactRISC Microcontrollers
CR16HCS9VJI0 制造商:NSC 制造商全稱:National Semiconductor 功能描述:Family of 16-bit CAN-enabled CompactRISC Microcontrollers
CR16HCS9VJI1 制造商:NSC 制造商全稱:National Semiconductor 功能描述:Family of 16-bit CAN-enabled CompactRISC Microcontrollers