參數(shù)資料
型號(hào): MPC8568EVTAUJJ
廠商: Freescale Semiconductor
文件頁(yè)數(shù): 114/139頁(yè)
文件大?。?/td> 0K
描述: MPU POWERQUICC III 1023-PBGA
標(biāo)準(zhǔn)包裝: 24
系列: MPC85xx
處理器類(lèi)型: 32-位 MPC85xx PowerQUICC III
速度: 1.333GHz
電壓: 1.1V
安裝類(lèi)型: 表面貼裝
封裝/外殼: 1023-BBGA,F(xiàn)CBGA
供應(yīng)商設(shè)備封裝: 1023-FCPBGA(33x33)
包裝: 托盤(pán)
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)當(dāng)前第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)
MPC8568E/MPC8567E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 1
76
Freescale Semiconductor
PCI Express
14.5
Receiver Compliance Eye Diagrams
The RX eye diagram in Figure 50 is specified using the passive compliance/test measurement load (see
Figure 51) in place of any real PCI Express RX component.
Note: In general, the minimum Receiver eye diagram measured with the compliance/test measurement
load (see Figure 51) will be larger than the minimum Receiver eye diagram measured over a range of
systems at the input Receiver of any real PCI Express component. The degraded eye diagram at the input
Receiver is due to traces internal to the package as well as silicon parasitic characteristics which cause the
real PCI Express component to vary in impedance from the compliance/test measurement load. The input
Receiver eye diagram is implementation specific and is not specified. RX component designer should
provide additional margin to adequately compensate for the degraded minimum Receiver eye diagram
(shown in Figure 50) expected at the input Receiver based on some adequate combination of system
simulations and the Return Loss measured looking into the RX package and silicon. The RX eye diagram
must be aligned in time using the jitter median to locate the center of the eye diagram.
LTX-SKEW
Total Skew
20
ns
Skew across all lanes on a Link. This includes
variation in the length of SKP ordered set (for
example, COM and one to five Symbols) at
the RX as well as any delay differences
arising from the interconnect itself.
Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 51 should be used
as the RX device when taking measurements (also refer to the Receiver compliance eye diagram shown in Figure 50). If the
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must
be used as a reference for the eye diagram.
3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in
which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any
250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point
in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must
be used as the reference for the eye diagram.
4. The Receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to
300 mV and the D- line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required)
over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The
reference impedance for return loss measurements for is 50 ohms to ground for both the D+ and D- line (that is, as measured
by a Vector Network Analyzer with 50 ohm probes—see Figure 51). Note: that the series capacitors CTX is optional for the
return loss measurement.
5. Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM)
there is a 5 ms transition time before Receiver termination values must be met on all un-configured Lanes of a Port.
6. The RX DC Common Mode Impedance that exists when no power is present or Fundamental Reset is asserted. This helps
ensure that the Receiver Detect circuit will not falsely assume a Receiver is powered on when it is not. This term must be
measured at 300 mV above the RX ground.
7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated
data.
Table 52. Differential Receiver (RX) Input Specifications (continued)
Symbol
Parameter
Min
Nom
Max
Units
Comments
相關(guān)PDF資料
PDF描述
MPC8572VTATLE MPU POWERQUICC III 1023FCPBGA
MPC8572EVTARLE MPU POWERQUICC III 1023FCPBGA
MPC8572VTATLD MPU POWERQUICC III 1023-PBGA
IDT70V9089S15PF8 IC SRAM 512KBIT 15NS 100TQFP
MPC8572EPXARLD MPU POWERQUICC III 1023-PBGA
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MPC8568VTAQGG 功能描述:微處理器 - MPU 8568 1GHz Non Encrypt RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:536 MHz 程序存儲(chǔ)器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類(lèi)型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-324
MPC8568VTAUJJ 功能描述:微處理器 - MPU 8568 1.33GHz Non Encrypt RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:536 MHz 程序存儲(chǔ)器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類(lèi)型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-324
MPC8569CVTANKGB 功能描述:數(shù)字信號(hào)處理器和控制器 - DSP, DSC 8569 XT 800/600/400 r2.1 RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時(shí)鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時(shí)器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT
MPC8569CVTAQLJB 功能描述:數(shù)字信號(hào)處理器和控制器 - DSP, DSC 8569 XT 1067/667/533 r2.1 RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時(shí)鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時(shí)器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT
MPC8569ECVTANKGB 功能描述:數(shù)字信號(hào)處理器和控制器 - DSP, DSC 8569E XT 800/600/400 r2.1 RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時(shí)鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時(shí)器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT