3–212
Motorola Sensor Device Data
For More Information On This Product,
Go to: www.freescale.com
INPUT TERMINALS
A schematic of the 4–20 mA Pressure Transducer topology
is shown in Figure 2. Connections to this topology are made
at the terminals labeled (+) and (–). Because this system
utilizes a current signal, the power supply, the load and any
current meter must be put in series with the (+) to (–) terminals
as indicated in the block diagram. The load for this type of
system is typically a few hundred ohms. As described above,
a typical use of a 4–20 mA current transmission signal is the
transfer of information over long distances. Therefore, a long
transmission line can be connected between the (+) and (–)
terminals on the evaluation board and the power supply/load.
2 14
D2
1N4565A
6.4V @ 0.5mA
XDCR1
MPX7100
3
2
4
1
2 mA
R3
39
R5
50
4
5
6
3
1
7 139
10 11
8
R1
750
1/2 W
Q1
MPSA06
U1
XTR101
12
R6
100K
R4
1M
R2
1K
D1
1N4002
C1
0.01
μ
F
+ 4–20 mA OUTPUT
– RETURN
Figure 2. Schematic Diagram
4–20 mA PRESSURE TRANSDUCER
PRESSURE INPUT
The device supplied on this topology is an MPX5100DP,
which provides two ports. P1, the positive pressure port, is on
top of the sensor and P2, the vacuum port, is on the bottom of
the sensor. The system can be supplied up to 15 PSI of
positive pressure to P1 or up to 15 PSI of vacuum to P2 or a
differential pressure up to 15 PSI between P1 and P2. Any of
these pressure applications will create the same results at the
sensor output.
CIRCUIT DESCRIPTION
The XTR101 current transmitter provides two one–milliamp
current sources for sensor excitation when its bias voltage is
between 12 V and 40 V. The MPX5100 series sensors are
constant voltage devices, so a zener, D2, is placed in parallel
with the sensor input terminals. Because the MPX5100 series
parts have a high impedance the zener and sensor
combination can be biased with just the two milliamps
available from the XTR101.
The offset adjustment is composed of R4 and R6. They are
used to remove the offset voltage at the differential inputs to
the XTR101. R6 is set so a zero input pressure will result in
the desired output of 4 mA.
R3 and R5 are used to provide the full scale current span of
16 mA. R5 is set such that a 15 PSI input pressure results in
the desired output of 20 mA. Thus the current signal will span
16 mA from the zero pressure output of 4 mA to the full scale
output of 20 mA. To calculate the resistor required to set the
full scale output span, the input voltage span must be defined.
The full scale output span of the sensor is 24.8 mV and is
VIN
to the XTR101. Burr–Brown specifies the following equation
for Rspan. The 40 and 16 m
values are parameters of the
XTR101.
R
span
40
64
16 mA
Vin)
0.016 mhos]
The XTR101 requires that the differential input voltage at
pins 3 and 4, V2 – V1 be less than 1V and that V2 (pin 4)
always be greater than V1 (pin 3). Furthermore, this
differential voltage is required to have a common mode of 4–6
volts above the reference (pin 7). The sensor produces the
differential output with a common mode of approximately 3.1
volts above its reference pin 1. Because the current of both 1
mA sources will go through R2, a total common mode voltage
of about 5.1 volts (1 k
x 2 mA + 3.1 volts = 5.1 volts) is
provided.
CONCLUSION
This circuit is an example of how the MPX5000 series
sensors can be utilized in an industrial application. It provides
a simple design alternative where remote pressure sensing is
required.
F
Freescale Semiconductor, Inc.
n
.