參數(shù)資料
型號(hào): DSP1628
英文描述: TVS 400W 60V BIDIRECT SMA
中文描述: 澄清,串行I /設(shè)備的DSP1620/27/28/29 O控制注冊(cè)說(shuō)明
文件頁(yè)數(shù): 25/114頁(yè)
文件大?。?/td> 804K
代理商: DSP1628
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)當(dāng)前第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)
Preliminary Data Sheet
February 1997
DSP1628 Digital Signal Processor
Lucent Technologies Inc.
23
4 Hardware Architecture
(continued)
While ILD1 and OLD1 are not required externally for
multiprocessor operation, they are used internally in the
DSP's SIO. Setting the LD field of the master's
sioc
reg-
ister to a logic level 1 will ensure that the active genera-
tion of SYNC1, ILD1, and OLD1 is derived from OCK1
(see Table 26). With this configuration, all DSPs should
use ICK1 (tied to OCK1) in passive mode to avoid con-
flicts on the clock (CK) line (see the DSP1611/17/18/27
Digital Signal Processor Information Manualfor more
information).
Four registers (per SIO) configure the multiprocessor
mode: the time-division multiplexed slot register (
tdms
or
tdms2
), the serial receive and transmit address reg-
ister (
srta
or
srta2
), the serial data transmit register
(
sdx
or
sdx2
), and the multiprocessor serial address/
protocol register (
saddx
or
saddx2
).
Multiprocessor mode requires no external logic and
uses a TDM interface with eight 16-bit time slots per
frame. The transmission in any time slot consists of
16 bits of serial data in the data channel and 16 bits of
address and protocol information in the address/proto-
col channel. The address information consists of the
transmit address field of the
srta
register of the trans-
mitting device. The address information is transmitted
concurrently with the transmission of the first 8 bits of
data. The protocol information consists of the transmit
protocol field written to the
saddx
register and is trans-
mitted concurrently with the last 8 bits of data (see
Table 29, Multiprocessor Protocol Register). Data is re-
ceived or recognized by other DSP(s) whose receive
address matches the address in the address/protocol
channel. Each SIO port has a user-programmable re-
ceive address and transmit address associated with it.
The transmit and receive addresses are programmed in
the
srta
register.
In multiprocessor mode, each device can send data in
a unique time slot designated by the
tdms
register
transmit slot field (bits 7—0). The
tdms
register has a
fully decoded transmit slot field in order to allow one
DSP1628 device to transmit in more than one time slot.
This procedure is useful for multiprocessor systems
with less than eight DSP1628 devices when a higher
bandwidth is necessary between certain devices in that
system. The DSP operating during time slot 0 also
drives SYNC1.
In order to prevent multiple bus drivers, only one DSP
can be programmed to transmit in a particular time slot.
In addition, it is important to note that the address/pro-
tocol channel is 3-stated in any time slot that is not being
driven.
Therefore, to prevent spurious inputs, the address/pro-
tocol channel should be pulled up to V
DD
with a 5 k
re-
sistor, or it should be guaranteed that the bus is driven
in every time slot. (If the SYNC1 signal is externally gen-
erated, then this pull-up is required for correct initializa-
tion.)
Each SIO also has a fully decoded transmitting address
specified by the
srta
register transmit address field (bits
7—0). This is used to transmit information regarding the
destination(s) of the data. The fully decoded receive ad-
dress specified by the
srta
register receive address field
(bits 15—8) determines which data will be received. The
SIO protocol channel data is controlled via the
saddx
register. When the
saddx
register is written, the lower 8
bits contain the 8-bit protocol field. On a read, the high-
order 8 bits read from
saddx
are the most recently re-
ceived protocol field sent from the transmitting DSP's
saddx
output register. The low-order 8 bits are read as
0s.
An example use of the protocol channel is to use the top
3 bits of the
saddx
value as an encoded source address
for the DSPs on the multiprocessor bus. This leaves the
remaining 5 bits available to convey additional control
information, such as whether the associated field is an
opcode or data, or whether it is the last word in a trans-
fer, etc. These bits can also be used to transfer parity in-
formation about the data. Alternatively, the entire field
can be used for data transmission, boosting the band-
width of the port by 50%.
Using SIO2
The SIO2 functions the same as the SIO. Please refer
to Pin Multiplexing in Section 4.1 for a description of pin
multiplexing of BIO, PHIF, VEC[3:0], and SIO2.
相關(guān)PDF資料
PDF描述
DSP16210 TVS 400W 6.5V UNIDIRECT SMA
DSP1627 TVS 400W 6.5V BIDIRECT SMA
DSP1629 TVS 400W 64V UNIDIRECT SMA
DSP16410C TVS 400W 7.0V UNIDIRECT SMA
DSP16410 16-bit fixed point DSP with Flash
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
DSP1629 制造商:AGERE 制造商全稱(chēng):AGERE 功能描述:DSP1629 Digital Signal Processor
DSP1629BA10K10IT 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:DSP|16-BIT|CMOS|BGA|144PIN|PLASTIC
DSP1629BA10K12.5IR 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:16-Bit Digital Signal Processor
DSP1629BA10K16.7IT 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:DSP|16-BIT|CMOS|BGA|144PIN|PLASTIC
DSP1629BA10K19.2IR 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:16-Bit Digital Signal Processor