參數(shù)資料
型號(hào): AD5363BSTZ-REEL
廠商: Analog Devices Inc
文件頁數(shù): 14/29頁
文件大小: 0K
描述: IC DAC 14BIT 8CH SERIAL 52-LQFP
產(chǎn)品培訓(xùn)模塊: Data Converter Fundamentals
DAC Architectures
標(biāo)準(zhǔn)包裝: 1,500
設(shè)置時(shí)間: 20µs
位數(shù): 14
數(shù)據(jù)接口: 串行
轉(zhuǎn)換器數(shù)目: 8
電壓電源: 雙 ±
功率耗散(最大): 209mW
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 52-LQFP
供應(yīng)商設(shè)備封裝: 52-LQFP(10x10)
包裝: 帶卷 (TR)
輸出數(shù)目和類型: 8 電壓,單極;8 電壓,雙極
采樣率(每秒): *
配用: EVAL-AD5363EBZ-ND - BOARD EVALUATION FOR AD5363
AD5362/AD5363
Rev. A | Page 20 of 2
8
RESET FUNCTION
The reset function is initiated by the RESET pin. On the rising
edge of RESET, the AD5362/AD5363 state machine initiates a
reset sequence to reset the X, M, and C registers to their default
values. This sequence typically takes 300 μs, and the user should
not write to the part during this time. On power-up, it is recom-
mended that the user bring RESET high as soon as possible to
properly initialize the registers.
When the reset sequence is complete (and provided that CLR is
high), the DAC output is at a potential specified by the default
register settings, which is equivalent to SIGGNDx. The DAC
outputs remain at SIGGNDx until the X, M, or C register is
updated and LDAC is taken low. The AD5362/AD5363 can be
returned to the default state by pulsing RESET low for at least
30 ns. Note that, because the reset function is triggered by the
rising edge, bringing RESET low has no effect on the operation
of the AD5362/AD5363.
CLEAR FUNCTION
CLR is an active low input that should be high for normal
operation. The CLR pin has an internal 500 kΩ pull-down
resistor. When CLR is low, the input to each of the DAC output
buffer stages (VOUT0 to VOUT7) is switched to the externally
set potential on the relevant SIGGNDx pin. While CLR is low,
all LDAC pulses are ignored. When CLR is taken high again,
the DAC outputs return to their previous values. The contents
of the input registers and DAC Register 0 to DAC Register 7 are
not affected by taking CLR low. To prevent glitches appearing
on the outputs, CLR should be brought low whenever the
output span is adjusted by writing to the offset DAC.
BUSY AND LDAC FUNCTIONS
The value of an X2 (A or B) register is calculated each time the
user writes new data to the corresponding X1, C, or M registers.
During the calculation of X2, the BUSY output goes low. While
BUSY is low, the user can continue writing new data to the X1,
M, or C registers (see the
section for
more details), but no DAC output updates can take place.
The BUSY pin is bidirectional and has a 50 kΩ internal pull-up
resistor. When multiple AD5362 or AD5363 devices are used in
one system, the BUSY pins can be tied together. This is useful
when it is required that no DAC in any device be updated until
all other DACs are ready. When each device has finished updat-
ing the X2 (A or B) registers, it releases the BUSY pin. If
another device has not finished updating its X2 registers, it
holds BUSY low, thus delaying the effect of LDAC going low.
The DAC outputs are updated by taking the LDAC input low. If
LDAC goes low while BUSY is active, the LDAC event is stored
and the DAC outputs are updated immediately after BUSY goes
high. A user can also hold the LDAC input permanently low. In
this case, the DAC outputs update immediately after BUSY goes
high. Whenever the A/B select registers are written to, BUSY
also goes low, for approximately 600 ns.
The AD5362/AD5363 have flexible addressing that allows
writing of data to a single channel, all channels in a group, or
all channels in the device. This means that one, two, four, or
eight DAC register values may need to be calculated and
updated. Because there is only one multiplier shared between
eight channels, this task must be done sequentially, so the
length of the BUSY pulse varies according to the number of
channels being updated.
Table 9. BUSY Pulse Widths
Action
BUSY Pulse Width1
Loading input, C, or M to 1 channel2
1.5 μs maximum
Loading input, C, or M to 2 channels
2.1 μs maximum
Loading input, C, or M to 8 channels
5.7 μs maximum
1
BUSY pulse width = ((number of channels + 1) × 600 ns) + 300 ns.
2 A single channel update is typically 1 μs.
The AD5362/AD5363 contain an extra feature whereby a DAC
register is not updated unless its X2A or X2B register has been
written to since the last time LDAC was brought low. Normally,
when LDAC is brought low, the DAC registers are filled with
the contents of the X2A or X2B registers, depending on the
setting of the A/B select registers. However, the AD5362/
AD5363 update the DAC register only if the X2A or X2B data
has changed, thereby removing unnecessary digital crosstalk.
BIN/2SCOMP PIN
The BIN/2SCOMP pin determines if the output data is presented
as offset binary or twos complement. If this pin is low, the data
is straight binary. If it is high, the data is twos complement. This
affects only the X, C, and offset DAC registers; the M register and
the control and command data are interpreted as straight binary.
TEMPERATURE SENSOR
The on-chip temperature sensor provides a voltage output
at the TEMP_OUT pin that is linearly proportional to the
Centigrade temperature scale. The typical accuracy of the
temperature sensor is +1°C at +25°C and ±5°C over the 40°C
to +85°C range. Its nominal output voltage is 1.46 V at 25°C,
varying at 4.4 mV/°C. Its low output impedance, low self-
heating, and linear output simplify interfacing to temperature
control circuitry and analog-to-digital converters.
相關(guān)PDF資料
PDF描述
VI-B4Z-MX-B1 CONVERTER MOD DC/DC 2V 30W
AD5363BCPZ-REEL7 IC DAC 14BIT 8CH SERIAL 56-LFCSP
VI-B4Z-MW-B1 CONVERTER MOD DC/DC 2V 40W
VI-B4Y-MY-B1 CONVERTER MOD DC/DC 3.3V 33W
AD5765CSUZ-REEL7 IC DAC 16BIT 5V QUAD 32-TQFP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD5365D/BIN/883B 制造商:Analog Devices 功能描述:- Rail/Tube
AD536A 制造商:AD 制造商全稱:Analog Devices 功能描述:Integrated Circuit True RMS-to-DC Converter
AD536AJC/D 制造商:未知廠家 制造商全稱:未知廠家 功能描述:RMS-to-DC Converter
AD536AJCHIPS 制造商:AD 制造商全稱:Analog Devices 功能描述:Integrated Circuit True RMS-to-DC Converter
AD536AJCWE 制造商:未知廠家 制造商全稱:未知廠家 功能描述:RMS-to-DC Converter