參數(shù)資料
型號(hào): CR16HCT5VJE8Y
英文描述: Microcontroller
中文描述: 微控制器
文件頁(yè)數(shù): 16/157頁(yè)
文件大?。?/td> 1256K
代理商: CR16HCT5VJE8Y
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)當(dāng)前第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)
www.national.com
16
I bit
The Global Maskable Interrupt Enable (I) bit is
used to enable or disable maskable interrupts.
If this bit and the Local Maskable Interrupt En-
able (E) bit are both set to 1, all maskable inter-
rupts are accepted. Otherwise, only the non-
maskable interrupt is accepted. This bit is auto-
matically cleared to 0 when an interrupt occurs
and automatically set to 1 upon completion of
an interrupt service routine.
Upon reset, all non-reserved bits of the register are cleared
to 0 except for the E bit (bit 9), which is set to 1. When a de-
vice reset occurs, the PSR contents prior to the reset are
stored into register R1, allowing the initialization software to
determine the state of the device prior to the reset operation.
7.4
The Configuration (CFG) register is a 16-bit core register that
determines the size of the INTBASE register. For the device,
the CFG register should always be left in its default state
(cleared to zero), resulting in a 16-bit INTBASE register.
CONFIGURATION REGISTER
7.5
Each instruction operates on one or more operands. An op-
erand can be a register or a memory location.
Most instructions use one, two, or three device registers as
operands. The instruction opcode specifies the registers to
be operated on. Some instructions may use an immediate
value (a value provided in the instruction itself) instead of a
register.
Memory locations are accessed only by the Load and Store
commands. The memory location to use for a particular in-
struction can be specified as an absolute, relative, or far-rel-
ative address.
The instruction set supports the following addressing modes:
Register Mode
The operand is a general-purpose regis-
ter: R0 through R13, RA, or SP. For exam-
ple:
ADDB R1, R2
Immediate
Mode
in the instruction. In a branch instruction,
the immediate operand is a displacement
from the program counter (PC). In the as-
sembly language syntax, a dollar sign indi-
cates an immediate value. For example:
MULW $4, R4
Relative Mode
The operand is located in memory. Its ad-
dress is obtained by adding the contents of
a general purpose register to the constant
value encoded into the displacement field
of the instruction. For example:
LOADW 12(R5), R6
Far-Relative
Mode
dress is obtained by concatenating a pair
of adjacent general-purpose registers to
form a 21-bit value, and adding this value
to the constant value encoded into the dis-
placement field of the instruction.
ADDRESSING MODES
For additional information on the instruction set and instruc-
tion encoding, see the CompactRISC CR16B Programmer's
Reference manual.
7.6
A stack is a one-dimensional data buffer in which values are
entered and removed one at a time. The last valued entered
is the first one removed. A register called the stack pointer
contains the current address of the last item entered on the
stack. In the device, when an item is entered or “pushed”
onto the stack, the stack expands downward in memory (the
stack pointer is decremented). When an item is removed or
“popped” from the stack, the stack shrinks upward in memory
(the stack pointer is incremented).
The device uses two type of stacks: the program stack and
the interrupt stack.
The program stack is used by the software to save and re-
store register values upon entry into and exit from a subrou-
tine. The software can also use the program stack to store
local and temporary variables. The stack pointer for this stack
is the SP register.
The interrupt stack is used to save and restore the program
state when an exception occurs (an interrupt or software
trap). The on-chip hardware automatically pushes the pro-
gram state information onto the stack before the exception
service procedure is executed. Upon exit from the exception
service procedure, the hardware pops this information from
the stack and restores the program state. The stack pointer
for this stack is the ISP register.
STACKS
7.7
Table 7 is a summary list of all instructions in the device in-
struction set. For each instruction, the table shows the mne-
monic and a brief description of the operation performed.
In the Mnemonic column, the lower-case letter “i” is used to
indicate the type of integer that the instruction operates on,
either “B” for byte or “W” for word. For example, the notation
ADDi for the “add” instruction means that there are two forms
of this instruction, ADDB and ADDW, which operate on bytes
and words, respectively.
Similarly, the lower-case string “cond” is used to indicate the
type of condition tested by the instruction. For example, the
notation Jcond represents a class of conditional jump instruc-
tions: JEQ for Jump on Equal, JNE for Jump on Not Equal,
and so on.
INSTRUCTION SET
A constant operand value is specified with-
The operand is located in memory. Its ad-
Absolute Mode
The operand is located in memory. Its ad-
dress is specified within the instruction.
For example:
LOADB 4000, R6
相關(guān)PDF資料
PDF描述
CR16HCT5VJE9Y Microcontroller
CR16HCT9
CR16HCT9VJE7 Microcontroller
CR16HCT9VJE7Y Microcontroller
CR16HCT9VJE8 Microcontroller
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CR16HCT5VJE9Y 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:Microcontroller
CR16HCT5VJEXY 制造商:NSC 制造商全稱(chēng):National Semiconductor 功能描述:CR16MCT9/CR16MCT5/CR16HCT9/CR16HCT5 16-Bit Reprogrammable/ROM Microcontroller
CR16HCT9 制造商:NSC 制造商全稱(chēng):National Semiconductor 功能描述:CR16MCT9/CR16MCT5/CR16HCT9/CR16HCT5 16-Bit Reprogrammable/ROM Microcontroller
CR16HCT9VJE7 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:Microcontroller
CR16HCT9VJE7Y 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:Microcontroller