78
Bit 0
This bit controls the Data Terminal Ready
(nDTR) output. When bit 0 is set to a logic
"1", the nDTR output is forced to a logic "0".
When bit 0 is a logic "0", the nDTR output is
forced to a logic "1".
Bit 1
This bit controls the Request To Send (nRTS)
output.
Bit 1 affects the nRTS output in a
manner identical to that described above for bit
0.
Bit 2
This bit controls the Output 1 (OUT1) bit. This
bit does not have an output pin and can only be
read or written by the CPU.
Bit 3
Output 2 (OUT2). This bit is used to enable an
UART interrupt. When OUT2 is a logic "0", the
serial port interrupt output is forced to a high
impedance state - disabled. When OUT2 is a
logic "1", the serial port interrupt outputs are
enabled.
Bit 4
This bit provides the loopback feature for
diagnostic testing of the Serial Port. When bit 4
is set to logic "1", the following occur:
1. The TXD is set to the Marking State(logic
"1").
2. The
receiver
Serial
Input
(RXD)
is
disconnected.
3. The output of the Transmitter Shift Register
is "looped back" into the Receiver Shift
Register input.
4. All MODEM Control inputs (nCTS, nDSR,
nRI and nDCD) are disconnected.
5. The four MODEM Control outputs (nDTR,
nRTS, OUT1 and
OUT2)
are
internally
connected to the four MODEM Control inputs
(nDSR, nCTS, RI and DCD) respectively.
6. The Modem Control output pins are forced
inactive high.
7. Data that is transmitted is immediately
received.
This feature allows the processor to verify the
transmit and receive data paths of the Serial
Port. In the diagnostic mode, the receiver and
the transmitter interrupts are fully operational.
The
MODEM
Control
Interrupts
are
also
operational but the interrupts' sources are now
the lower four bits of the MODEM Control
Register instead of the MODEM Control inputs.
The interrupts are still controlled by the Interrupt
Enable Register.
Bits 5 through 7
These bits are permanently set to logic zero.
LINE STATUS REGISTER (LSR)
Address Offset = 5H, DLAB = X, READ/WRITE
Bit 0
Data Ready (DR).
It is set to a logic "1"
whenever a complete incoming character has
been received and transferred into the Receiver
Buffer Register or the FIFO. Bit 0 is reset to a
logic "0" by reading all of the data in the Receive
Buffer Register or the FIFO.
Bit 1
Overrun Error (OE). Bit 1 indicates that data in
the Receiver Buffer Register was not read before
the next character was transferred into the
register,
thereby
destroying
the
previous
character. In FIFO mode, an overrunn error will
occur only when the FIFO is full and the next
character has been completely received in the
shift register, the character in the shift register is
overwritten but not transferred to the FIFO. The
OE indicator is set to a logic "1" immediately
upon detection of an overrun condition, and
reset whenever the Line Status Register is read.
Bit 2
Parity Error (PE).
Bit 2 indicates that the
received data character does not have the
correct even or odd parity, as selected by the
even parity select bit. The PE is set to a logic
"1" upon detection of a parity error and is reset
to a logic "0" whenever the Line Status Register
is read.
In the FIFO mode this error is
associated with the particular character in the
FIFO it applies to. This error is indicated when