參數(shù)資料
型號: AD9517-2A/PCBZ
廠商: Analog Devices Inc
文件頁數(shù): 39/80頁
文件大?。?/td> 0K
描述: BOARD EVALUATION FOR AD9517-2A
設計資源: AD9517 Eval Brd Schematics
AD9517 Gerber Files
AD9517-2 BOM
標準包裝: 1
主要目的: 計時,時鐘發(fā)生器
嵌入式:
已用 IC / 零件: AD9517-2A
主要屬性: 2 輸入,12 輸出,2.2GHz VCO
次要屬性: CMOS,LVPECL 和 LVDS 兼容
已供物品:
AD9517-2
Data Sheet
Rev. E | Page 44 of 80
Phase Offset or Coarse Time Delay (0, 1)
Each channel divider allows for a phase offset, or a coarse time
delay, to be programmed by setting register bits (see Table 38).
These settings determine the number of cycles (successive
rising edges) of the channel divider input frequency by which to
offset, or delay, the rising edge of the output of the divider. This
delay is with respect to a nondelayed output (that is, with a
phase offset of zero). The amount of the delay is set by five bits
loaded into the phase offset (PO) register plus the start high (SH)
bit for each channel divider. When the start high bit is set, the
delay is also affected by the number of low cycles (M) that are
programmed for the divider.
The sync function must be used to make phase offsets effective
Table 38. Setting Phase Offset and Division for Divider 0 and
Divider 1
Divider
Start
High (SH)
Phase
Offset (PO)
Low Cycles
M
High Cycles
N
0
0x191[4]
0x191[3:0]
0x190[7:4]
0x190[3:0]
1
0x197[4]
0x197[3:0]
0x196[7:4]
0x196[3:0]
Let
Δt = delay (in seconds).
Δc = delay (in cycles of clock signal at input to DX).
TX = period of the clock signal at the input of the divider, DX
(in seconds).
Φ = 16 × SH[4] + 8 × PO[3] + 4 × PO[2] + 2 × PO[1] + 1 × PO[0]
The channel divide-by is set as N = high cycles and M = low cycles.
Case 1
For Φ ≤ 15:
Δt = Φ × TX
Δc = Δt/TX = Φ
Case 2
For Φ ≥ 16:
Δt = (Φ 16 + M + 1) × TX
Δc = Δt/TX
By giving each divider a different phase offset, output-to-output
delays can be set in increments of the channel divider input
clock cycle. Figure 55 shows the results of setting such a coarse
offset between outputs.
CHANNEL DIVIDER OUTPUTS
DIV = 4, DUTY = 50%
0
123
4567
89 10 11 12 13 14 15
Tx
DIVIDER 0
DIVIDER 1
DIVIDER 2
CHANNEL
DIVIDER INPUT
SH = 0
PO = 0
SH = 0
PO = 1
SH = 0
PO = 2
1 × Tx
2 × Tx
06
42
6-
0
71
Figure 55. Effect of Coarse Phase Offset (or Delay)
Channel Dividers—LVDS/CMOS Outputs
Channel Divider 2 and Channel Divider 3 each drive a pair of
LVDS outputs, giving a total of four LVDS outputs (OUT4 to
OUT7). Alternatively, each of these LVDS differential outputs
can be configured individually as a pair (A and B) of CMOS
single-ended outputs, providing for up to eight CMOS outputs.
By default, the B output of each pair is off but can be turned on
as desired.
Channel Divider 2 and Channel Divider 3 each consist of two
cascaded, 2 to 32, frequency dividers. The channel frequency
division is DX.1 × DX.2 or up to 1024. Divide-by-1 is achieved by
bypassing one or both of these dividers. Both of the dividers
also have DCC enabled by default, but this function can be
disabled, if desired, by setting the DCCOFF bit of the channel.
A coarse phase offset or delay is also programmable (see the
section). The channel dividers operate up to 1600 MHz. The
features and settings of the dividers are selected by programming
the appropriate setup and control registers (see Table 52 and
Table 39. Setting Division (DX) for Divider 2, Divider 31
Divider
M
N
Bypass
DCCOFF
2
2.1
0x199[7:4]
0x199[3:0]
0x19C[4]
0x19D[0]
2.2
0x19B[7:4]
0x19B[3:0]
0x19C[5]
0x19D[0]
3
3.1
0x19E[7:4]
0x19E[3:0]
0x1A1[4]
0x1A2[0]
3.2
0x1A0[7:4]
0x1A0[3:0]
0x1A1[5]
0x1A2[0]
1 Note that the value stored in the register = # of cycles minus 1.
Channel Frequency Division (Divider 2 and Divider 3)
The division for each channel divider is set by the bits in the
registers for the individual dividers (X.Y = 2.1, 2.2, 3.1, and 3.2)
Number of Low Cycles = MX.Y + 1
Number of High Cycles = NX.Y + 1
When both X.1 and X.2 are bypassed, DX = 1 × 1 = 1.
When only X.2 is bypassed, DX = (NX.1 + MX.1 + 2) × 1.
When both X.1 and X.2 are not bypassed, DX = (NX.1 + MX.1 + 2) ×
(NX.2 + MX.2 + 2).
By cascading the dividers, channel division up to 1024 can be
obtained. However, not all integer value divisions from 1 to
1024 are obtainable; only the values that are the product of the
separate divisions of the two dividers (DX.1 × DX.2) can be realized.
If only one divider is needed when using Divider 2 and Divider 3,
use the first one (X.1) and bypass the second one (X.2). Do not
bypass X.1 and use X.2.
相關PDF資料
PDF描述
VI-J00-EZ-S CONVERTER MOD DC/DC 5V 25W
ILC0402ER15NK INDUCTOR CER 15NH 0402
SP1210R-473K INDUCTOR PWR SHIELDED 47.0UH SMD
MCP121T-300E/TT IC SUPERVISOR 2.93V LOW SOT-23B
AD9517-4A/PCBZ BOARD EVALUATION FOR AD9517-4A
相關代理商/技術參數(shù)
參數(shù)描述
AD9517-2BCPZ 制造商:Analog Devices 功能描述:Clock Generator 48-Pin LFCSP EP Tray
AD9517-2BCPZ-REEL7 制造商:Analog Devices 功能描述:
AD9517-2BCPZ-TR 制造商:Analog Devices 功能描述:OUPUT CLOCK GENERATOR WITH 2.2HZ VCO - Tape and Reel
AD9517-3 制造商:AD 制造商全稱:Analog Devices 功能描述:12-Output Clock Generator with Integrated 2.0 GHz VCO
AD9517-3A/PCBZ 功能描述:BOARD EVALUATION FOR AD9517-3A RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評估演示板和套件 系列:- 標準包裝:1 系列:PSoC® 主要目的:電源管理,熱管理 嵌入式:- 已用 IC / 零件:- 主要屬性:- 次要屬性:- 已供物品:板,CD,電源