參數(shù)資料
型號: AM79C961AVCW
廠商: ADVANCED MICRO DEVICES INC
元件分類: 微控制器/微處理器
英文描述: PCnet⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA
中文描述: 2 CHANNEL(S), 10M bps, LOCAL AREA NETWORK CONTROLLER, PQFP144
封裝: TQFP-144
文件頁數(shù): 191/206頁
文件大?。?/td> 1507K
代理商: AM79C961AVCW
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁當(dāng)前第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁
APPENDIX E
Am79C961A
191
Introduction of the Look-
Ahead Packet Processing (LAPP) Concept
A driver for the PCnet-ISA II controller would normally
require that the CPU copy receive frame data from the
controller
s buffer space to the application
s buffer
space after the entire frame has been received by the
controller. For applications that use a ping-pong
windowing style, the traffic on the network will be
halted until the current frame has been completely
processed by the entire application stack. This means
that the time between last byte of a receive frame
arriving at the client
s Ethernet controller and the
client
s transmission of the first byte of the next
outgoing frame will be separated by:
1. the time that it takes the client
s CPU
s interrupt
procedure to pass software control from the current
task to the driver
2. plus the time that it takes the client driver to pass the
header data to the application and request an
application buffer
3. plus the time that it takes the application to generate
the buffer pointer and then return the buffer pointer
to the driver
4. plus the time that it takes the client driver to transfer
all of the frame data from the controller
s buffer
space into the application
s buffer space and then
call the application again to process the complete
frame
5. plus the time that it takes the application to process
the frame and generate the next outgoing frame
6. plus the time that it takes the client driver to set up
the descriptor for the controller and then write a
TDMD bit to CSR0
The sum of these times can often be about the same
as the time taken to actually transmit the frames on the
wire, thereby yielding a network utilization rate of less
than 50%.
An important thing to note is that the PCnet-ISA II con-
troller
s data transfers to its buffer space are such that
the system bus is needed by the PCnet-ISA II controller
for approximately 4% of the time. This leaves 96% of the
system bus bandwidth for the CPU to perform some of
the inter-frame operations
in advance of the completion
of network receive activity
, if possible. The question then
becomes: how much of the tasks that need to be per-
formed between reception of a frame and transmission
of the next frame can be performed
before
the reception
of the frame actually ends at the network, and how can
the CPU be instructed to perform these tasks during the
network reception time
The answer depends upon exactly what is happening
in the driver and application code, but the steps that
can be performed at the same time as the receive data
are arriving include as much as the first three steps and
part of the fourth step shown in the sequence above.
By performing these steps before the entire frame has
arrived, the frame throughput can be substantially
increased.
A good increase in performance can be expected
when the first three steps are performed before the
end of the network receive operation. A much more
significant performance increase could be realized if
the PCnet-ISA II controller could place the frame
data directly into the application
s buffer space; (i.e.
eliminate the need for step four). In order to make
this work, it is necessary that the application buffer
pointer be determined before the frame has com-
pletely arrived, then the buffer pointer in the next
desriptor for the receive frame would need to be
modified in order to direct the PCnet-ISA II controller
to write directly to the application buffer. More details
on this operation will be given later.
An alternative modification to the existing system can
gain a smaller, but still significant improvement in per-
formance. This alternative leaves step four unchanged
in that the CPU is still required to perform the copy
operation, but it allows a large portion of the copy oper-
ation to be done before the frame has been completely
received by the controller, (i.e. the CPU can perform
the copy operation of the receive data from the PC-
net-ISA II controller
s buffer space into the application
buffer space before the frame data has completely ar-
rived from the network). This allows the copy operation
of step four to be performed concurrently with the ar-
rival of network data, rather than sequentially, following
the end of network receive activity.
Outline of the LAPP Flow:
This section gives a suggested outline for a driver that
utilizes the LAPP feature of the PCnet-ISA II controller.
相關(guān)PDF資料
PDF描述
AM79C961AVIW PCnet⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA
Am79C965A PCnet?-32 Single-Chip 32-Bit Ethernet Controller
AM79C970AKCW PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
AM79C970AKC PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
AM79C970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM79C961AVI 制造商:Rochester Electronics LLC 功能描述:
AM79C961AVI/W 制造商:未知廠家 制造商全稱:未知廠家 功能描述:LAN Node Controller
AM79C961AVI\\W 制造商:Rochester Electronics LLC 功能描述:
AM79C961AVI\W 制造商:Rochester Electronics LLC 功能描述:
AM79C961AVIW 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:PCnet⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA