參數(shù)資料
型號: AM79C978
廠商: Advanced Micro Devices, Inc.
英文描述: Single-Chip 1/10 Mbps PCI Home Networking Controller
中文描述: 單芯片的1 / 10 Mbps的家庭網(wǎng)絡(luò)控制器的PCI
文件頁數(shù): 67/261頁
文件大小: 3803K
代理商: AM79C978
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁當(dāng)前第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁第261頁
Am79C978
67
Media Access Management
The basic requirement for all stations on the network is
to provide fairness of channel allocation. The IEEE
802.3/Ethernet protocols define a media access mech-
anism which permits all stations to access the channel
with equality. Any node can attempt to contend for the
channel by waiting for a predetermined time (Inter
Packet Gap) after the last activity, before transmitting
on the media. The channel is a multidrop communica-
tions media (with various topological configurations
permitted), which allows a single station to transmit and
all other stations to receive. If two nodes simulta-
neously contend for the channel, their signals will inter-
act causing loss of data, defined as a collision. It is the
responsibility of the MAC to attempt to avoid and
recover from a collision and to guarantee data integrity
for the end-to-end transmission to the receiving station.
Medium Allocation
The IEEE/ANSI 802.3 standard (ISO/IEC 8802-3 1990)
requires that the CSMA/CD MAC monitor the medium
for traffic by watching for carrier activity. When carrier
is detected, the media is considered busy, and the
MAC should defer to the existing message.
The ISO 8802-3 (IEEE/ANSI 802.3) standard also
allows optionally a two-part deferral after a receive
message.
See ANSI/IEEE Std 802.3-1993 Edition, 4.2.3.2.1:
Note:
“It is possible for the PLS carrier sense indica-
tion to fail to be asserted during a collision on the me-
dia. If the deference process simply times the inter-
frame gap based on this indication, it is possible for a
short interframe gap to be generated, leading to a po-
tential reception failure of a subsequent frame. To en-
hance system robustness, the following optional
measures (as specified in 4.2.8) are recommended
when InterFrameSpacingPart1 is other than 0:
1. Upon completing a transmission, start timing the in-
terrupted gap as soon as transmitting and carrier
sense are both false.
2. When timing an inter-frame gap following reception,
reset the inter-frame gap timing if carrier sense be-
comes true during the first 2/3 of the inter-frame gap
timing interval. During the final 1/3 of the interval,
the timer shall not be reset to ensure fair access to
the medium. An initial period shorter than 2/3 of the
interval is permissible including 0.”
The MAC engine implements the optional receive two-
part deferral algorithm, with an InterFrameSpacing-
Part1 time of 6.0 ms. The InterFrameSpacingPart 2 in-
terval is, therefore, 3.4 ms.
TheAm79C978 controller will perform the two-part de-
ferral algorithm as specified in the
Process Deference
section. The Inter Packet Gap (IPG) timer will start tim-
ing the 9.6 ms InterFrameSpacing after the receive car-
rier is deasserted. During the first part deferral
(InterFrameSpacingPart1 - IFS1), the Am79C978 con-
troller will defer any pending transmit frame and re-
spond to the receive message. The IPG counter will be
cleared to 0 continuously until the carrier deasserts, at
which point the IPG counter will resume the 9.6 ms
count once again. Once the IFS1 period of 6.0 ms has
elapsed, the Am79C978 controller will begin timing the
second part deferral (InterFrameSpacingPart2 - IFS2)
of 3.4 ms. Once IFS1 has completed and IFS2 has
commenced, the Am79C978 controller will not defer to
a receive frame if a transmit frame is pending. This
means that the Am79C978 controller will not attempt to
receive the receive frame, since it will start to transmit
and generate a collision at 9.6 ms. TheAm79C978 con-
troller will complete the preamble (64-bit) and jam (32-
bit) sequence before ceasing transmission and invok-
ing the random backoff algorithm.
TheAm79C978 controller allows the user to program
the
IPG
and
the
(InterFrameSpacingPart1 - IFS1) through CSR125. By
changing the IPG default value of 96 bit times (60h),
the user can adjust the fairness or aggressiveness of
the MAC on the network. By programming a lower
number of bit times than the ISO/IEC 8802-3 standard
requires, the MAC engine will become more aggres-
sive on the network. This aggressive nature will give
rise to the Am79C978 controller possibly capturing the
network at times by forcing other less aggressive com-
pliant nodes to defer. By programming a larger number
of bit times, the MAC will become less aggressive on
the network and may defer more often than normal.
The performance of the Am79C978 controller may de-
crease as the IPG value is increased from the default
value, but the resulting behavior may improve network
performance by reducing collisions. TheAm79C978
controller uses the same IPG for back-to-back trans-
mits and receive-to-transmit accesses. Changing IFS1
will alter the period for which the MAC engine will defer
to incoming receive frames.
first-part
deferral
CAUTION: Care must be exercised when altering
these parameters
.
Adverse network activity could
result!
This transmit two-part deferral algorithm is imple-
mented as an option which can be disabled using the
DXMT2PD bit in CSR3. The IFS1 programming will
have no effect when DXMT2PD is set to 1, but the IPG
programming value is still valid. Two part deferral after
transmission is useful for ensuring that severe IPG
shrinkage cannot occur in specific circumstances,
causing a transmit message to follow a receive mes-
sage so closely as to make them indistinguishable.
During the time period immediately after a transmission
has been completed, the external transceiver should
generate the SQE Test message within 0.6 to 1.6 ms
after the transmission ceases. During the time period in
相關(guān)PDF資料
PDF描述
AM79C981 Integrated Multiport Repeater Plus⑩ (IMR+⑩)
AM79C981JC Integrated Multiport Repeater Plus⑩ (IMR+⑩)
AM79C982 basic Integrated Multiport Repeater (bIMR)
AM79C982-4JC basic Integrated Multiport Repeater (bIMR)
AM79C982-8JC basic Integrated Multiport Repeater (bIMR)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM79C978A 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Single-Chip 1/10 Mbps PCI Home Networking Controller
AM79C978AKC\\W 制造商:Advanced Micro Devices 功能描述:
AM79C978AKC\W 制造商:Advanced Micro Devices 功能描述:
AM79C978AKCW 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Single-Chip 1/10 Mbps PCI Home Networking Controller