參數(shù)資料
型號(hào): MT9076
廠商: Mitel Networks Corporation
英文描述: T1/E1/J1 3.3V Single Chip Transceiver
中文描述: T1/E1/J1收發(fā)3.3V的單芯片收發(fā)器
文件頁(yè)數(shù): 41/160頁(yè)
文件大小: 416K
代理商: MT9076
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)當(dāng)前第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)
Preliminary Information
MT9076
37
8.2.4
The transmitter will abort a current packet by substituting a zero followed by seven contiguous 1s in place of the
normal packet. The receiver will abort upon reception of seven contiguous 1s occurring between the flags of a
packet which contains at least 26 bits.
Frame Abort
Note that should the last received byte before the frame abort end with contiguous 1s, these are included in the
seven 1s required for a receiver abort. This means that the location of the abort sequence in the receiver may
occur before the location of the abort sequence in the originally transmitted packet. If this happens then the last
data written to the receive FIFO will not correspond exactly with the last byte sent before the frame abort.
8.2.5
When the HDLC transmitter is not sending packets it will wait in one of two states
Interframe Time Fill state: This is a continuous series of flags occurring between frames indicating that
the channel is active but that no data is being sent.
Idle state: An idle Channel occurs when at least 15 contiguous 1s are transmitted or received.
In both states the transmitter will exit the wait state when data is loaded into the transmitter FIFO.
Interframe Time Fill and Link Channel States
8.2.6
A go ahead is defined as the pattern "011111110" (contiguous 7Fs) and is the occurance of a frame abort
sequence followed by a zero, outside of the boundaries of a normal packet. Being able to distinguish a proper
(in packet) frame abort sequence from one occurring outside of a packet allows a higher level of signaling
protocol which is not part of the HDLC specifications.
Go-Ahead
8.3
HDLC Functional Description
The HDLC transceiver can be reset by either the power reset input signal or by the HRST Control bit in the test
control register (software reset). When reset, the HDLC Control Registers are cleared, resulting in the
transmitter and receiver being disabled. The Receiver and Transmitter can be enabled independent of one
another through Control Register 1. The transceiver input and output are enabled when the enable control bits
in Control Register 1 are set. Transmit to receive loopback as well as a receive to transmit loopback are also
supported. Transmit and receive bit rates and enables can operate independently. In MT9076 the transceiver
can operate at a continuous rate independent of RXcen and TXcen (free run mode) by setting the Frun bit of
Control Register 1.
Received packets from the serial interface are sectioned into bytes by an HDLC receiver that detects flags,
checks for go-ahead signals, removes inserted zeros, performs a cyclical redundancy check (CRC) on
incoming data, and monitors the address if required. Packet reception begins upon detection of an opening
flag. The resulting bytes are concatenated with two status bits (RQ9, RQ8) and placed in a receiver first-in-first-
out (Rx FIFO); a buffer register that generates status and interrupts for microprocessor read control.
In conjunction with the control circuitry, the microprocessor writes data bytes into a Tx buffer register (Tx FIFO)
that generates status and interrupts. Packet transmission begins when the microprocessor writes a byte to the
Tx FIFO. Two status bits are added to the Tx FIFO for transmitter control of frame aborts (FA) and end of
packet (EOP) flags. Packets have flags appended, zeros inserted, and a CRC, also referred to as frame
checking sequence (FCS), added automatically during serial transmission. When the Tx FIFO is empty and
finished sending a packet, Interframe Time Fill bytes (continuous flags (7E hex)), or Mark Idle (continuous
ones) are transmitted to indicate that the channel is idle.
8.3.1
Following initialization and enabling, the transmitter is in the Idle Channel state (Mark Idle), continuously
sending ones. Interframe Time Fill state (Flag Idle) is selected by setting the Mark idle bit in Control Register 1
high. The Transmitter remains in either of these two states until data is written to the Tx FIFO. Control Register
1 bits EOP (end of packet) and FA (Frame Abort) are set as status bits before the microprocessor loads 8 bits
of data into the 10 bit wide FIFO (8 bits data and 2 bits status). To change the tag bits being loaded in the FIFO,
Control Register 1 must be written to before writing to the FIFO. However, EOP and FA are reset after writing to
HDLC Transmitter
相關(guān)PDF資料
PDF描述
MT9076AB T1/E1/J1 3.3V Single Chip Transceiver
MT9076 T1/E1/J1 3.3V Single Chip Transceiver(T1/E1/J1 3.3V 單片收發(fā)器)
MT9079 Advanced Controller for E1(先進(jìn)的E1幀調(diào)節(jié)器和控制器)
MT9080B SMX - Switch Matrix Module(用于消費(fèi)類轉(zhuǎn)換應(yīng)用的開關(guān)矩陣模塊)
MT90810 Flexible MVIP(Multi-Vendor Integration Protocol) Interface Circuit(彈性MVIP接口電路)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MT9076AB 制造商:MITEL 制造商全稱:Mitel Networks Corporation 功能描述:T1/E1/J1 3.3V Single Chip Transceiver
MT9076AP 制造商:MITEL 制造商全稱:Mitel Networks Corporation 功能描述:T1/E1/J1 3.3V Single Chip Transceiver
MT9076B 制造商:ZARLINK 制造商全稱:Zarlink Semiconductor Inc 功能描述:T1/E1/J1 3.3 V Single Chip Transceiver
MT9076BB 制造商:Zarlink Semiconductor Inc 功能描述:FRAMER E1/J1/T1 3.3V 80LQFP - Trays
MT9076BB1 制造商:Zarlink Semiconductor Inc 功能描述:FRAMER E1/J1/T1 3.3V 80LQFP - Trays