
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Preliminary Data Sheet
PT7D6555
Extended PCM Interface Controller
9
PT0105(08/02)
Ver:0
Figure 2. Digital Line Card Architecture with a Completely Central D-Channel Handling
Mixed D-Channel Processing, Signalling Decentralized,
Packet Data Centralized
Another possibility is a mixed architecture with centralized
packet data and decentralized signalling handling. This is a
very flexible architecture that reduces the dynamic load of
central processing units by evaluating the signalling informa-
tion on the line card, but does not require resources for packet
data handling. Any increase of packet data traffic does not
necessitate a change in the line card architecture, the central
packet handling unit can be expanded.
In this application PT7A6527 are employed to handle the data
on the D-channel. The PT7A6527 separate signalling infor-
mation from data packets. The signalling messages are trans-
ferred to the
μ
P, which in turn hands them over to the group
controller using the PT7A6525.
The packet data is processed differently. Together with the
collision resolution information it is transferred to one IOM-2
port of the PT7D6555. The PT7D6555 switches the channels
to the PCM-highway, optionally combining four D-channels
to one 64-kbit/s channel. In this configuration one IOM-2 in-
terface is occupied by PT7A6527, reducing the total switch-
ing capability of the PT7D6555 to 24 ISDN-subscribers.
Figure 3. Line Card Architecture for Mixed D-Channel Processing
PT7D6555
μP
PT7A6525
Signaling
Highway
PCM
Highway
IOM -2
Interface
B,D
B
B
B
D
D
D
D
B
Example Frame Structure
PT7D6555
PT7A6525
μP
IOM -2
Interface
p-Data
PT7A6527
PT7A6527
Signaling
P+Coll
P
Sig.
Data
PCM
Highway
Signaling
Highway
S
B,P,C
B
B
C
B
P
B
B
Example Frame Structure
Packet
Data
Collision
Data